Gary Friedman publishes NEX-7 ‘beyond the guide’ book

As Gary says, his e-books do not replace the camera manual and also don’t replace Camera Controls 101 – he writes for the user who already knows which end of the lens fits a screw filter and which end goes on the camera body. His new NEX-7 book fast-tracks into many key features of the camera before backtracking into depth and detail, a great way to introduce owners to making better use of the advanced functions they have bought.

http://friedmanarchives.com/NEX-7

NEX-7 book cover

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The only downside to the book is the cover, which features a new addition to the long line of bald heads Gary has used for his cover shots (always in the same style) – a penalty for visiting Gary just before the book was going to e-press!

The $26.45 download (PDF, full colour, with additional resources for Kindle and other bw reader platforms) now strikes me as even better value after the last week of wandering through California by car in search of images. The USA is now fairly expensive compared to much of Europe, not affordable as it used to be – and this comes as a surprise, because things like the camera prices at B&H do not give much clue, they are still generally lower. In California at least things like motels (except the most basic), beer, coffee, snacks, entry or parking fees are maybe 50% more than UK costs – so to all our US readers, be assured, now is a very good time to use your NEX-7 skills and take a trip across the pond. You can find an award-winning b&b with one of the best full breakfasts in Scotland for under $75 (£=$1.60) in our home town with a pretty good photographer running it!

– David Kilpatrick

Mixed up market – specced up compacts, dumbed down DSLRs

Canon has pulled off another change in the direction of DSLR development with the EOS 650D, but in the process seem to have accepted a blurring of the boundaries between consumer cameras and enthusiast gear. Sony has finally bowed to pressure and put raw image processing back into a compact, using a larger than normal sensor, doing the same in reverse.

To explain, neither of these cameras belong within Photoclubalpha – we don’t usually report on Sony Cyber-shot compacts, equally rarely on Canon’s latest competitor to the A57. But these two cameras are waymarkers. They show us where two strands of development are heading, and how they are converging.

Canon EOS 650D

650D with new 18-135mm STM lens, required stepper-motor technology for off-sensor video auto focus

The new points about the 650D (also known as the EOS Rebel T4i for that least rebellious of areas, the USA) are simple enough. It’s yet another 18 megapixel APS-C model in the series 500/550/600 rather than the more professional 50/60/7 body form. Maximum frame rate is 5fps. It has full 1080p HD, but only at 30fps maximum (720/60p) with a 5.5MB/sec data rate. Unlike previous models, this one can focus during video shooting, and may well do it better than a NEX.

It has a conventional 9-cross point phase detect AF module much improved over earlier versions, included a central double-cross f/2.8 sensitive point. When shooting video, hybrid AF combines normal wide area contrast-detection with a similar centrally located phase-detect pixel arrangement that offers much faster locking on before the CD takes over to fine tune and track moving subjects or faces.

No visible signs on the CMOS – but that sensor had a phase-detect central zone

So there are two AF systems, one of which remains live for video. To work properly it needs a new type of lens motor, called STM. This stepping motor appears to be not unlike the NEX system lenses, offering the necessary control for AF during video with silent action. Just two lenses initially have it, a pancake EF 40mm f/2.8 STM and a general purpose stabilised EF-S 18-135mm f/3.5-5.6 IS STM. If you know your Canon system terminology, you’ll spot that the 40mm is compatible with full frame DSLRs it’s not just an odd 64mm equivalent for the APS-C models.

With other lenses, the implication from Canon is that AF during movie shooting will not work. That includes the cheapest kit option, the 18-55mm. No matter what type of USM or micromotor AF drive. If you want video with AF, you need the new STM lenses.

The Canon phase-detect on sensor is purely a central patch, not an overall function like Nikon’s 1 system 71-point PD. But, like consumer cameras, Canon adds touch screen functions to the 650D. This is a response to consumer demand. You can still operate the camera with the rear screen completely reversed. I have to admit that the first thing I did with the NEX-5n was to disable the touch screen function, and never use it.

For a Canon, the 650D has a surprisingly limited battery range, as low as 180 shots per charge if live view, flash and image review functions are used in their worst-case scenario.

The Sony Cyber-shot RX100

A neat metal bodied almost Samsung-like compact, the RX100 has an 8.8 x 13.2mm sensor, the 1/1 or one-inch ‘1’ format already used by Nikon. It offers a stabilised Carl Zeiss 28-100mm equivalent lens which is very fast (f/1.8 at the wide end, f/4.9 tele) and may be of enthusiast-pro quality, and a 3″ rear screen where daylight viewing brightness is enhanced using white pixels as well as RGB.

The RX100 offers full HD movies at 28M bitrate – 1080/60p equal to NEX and Alpha. It also seems to get reasonable life from a small battery, 330 shots or 165 minutes of movie, and to have a decent 2.5fps conventional fps plus the popular Sony 10fps speed piority mode.

For most of us, the really big news is that for the first time since classic bridge camera models like the F-828 Sony has decided to provide raw image capture in a pocketable compact. No doubt the success of the Fuji X10, Canon G1X and others has been observed. It is fair to say that Sony could have put raw capture into far more compacts – they all have it hidden away away, an ability carefully locked out by firmware.

To date, we have felt that Sony wanted to protect the NEX and Alpha markets at any cost by omitting raw even from the best Cyber-shot models. The RX100 changes this perception. It leaves the expensive semi-pro hybrid video and still camera, the NEX VG-10, looking a bit sad with its JPEG-only still capture. After all, if compact owners do indeed want raw, surely VG-10 owners would be expected to want no less?

And that sensor is 20 megapixels. It’s twice the pixel count of the Nikon 1. There was a time something like happened in the past. Nikon made a camera called the D1 (then D1X) which had a 5-megapixel sensor, and then a sort of firmware and processing fix to make it halfway like a 10 megapixel sensor. It was revealed that the ‘rectangular pixels’ of the D1 were actually two pixels in a strip. When a different RGB topping and readout was applied to the same exact silicon, it became the Sony 10 megapixel sensor we saw in the Alpha 100 (and the Nikon D200). Nothing like that could possibly have happened with a Sony 20 megapixel sensor to make a Nikon 10 megapixel sensor, even though they both share the same unusual 8.8 x 13.2mm size.

And even though Nikon uses a whole stack of pixels on that sensor to perform phase-detection AF without any apparent loss of those pixels to the image – spread out over 71 points across the entire frame too. There’s no way, is there, they could ever have based that 10 megapixel PD-AF capable sensor on a Sony 20 megapixel original.

– David Kilpatrick

What the buyer wants – NEX-F3, Alpha 37 and more

SONY is sometimes accused of not listening to the Alpha or NEX owner when it comes to what features they include in new cameras, and what modifications they offer through firmware to existing owners. There are two points of view on firmware; some criticise updates, saying the product should have been released with the right stuff inside on Day 1 while other praise those makers who issue frequent and valuable firmware revisions because they ‘supporting the product’.

My view is the latter; if I own a camera, I really don’t care much what bells and whistles are added to its successor in hardware as I know the only way to get those is to buy the new model. But I do value firmware updates and I know that far more could be done to keep the firmware of older models in top condition. I guess they would have to issue a new camera manual and don’t want to improve the user interface or add functions not included in the original!

Sony does listen, but it listens harder to new potential buyers than to existing owners. It listens to the untapped market, to the people who buy someone else’s camera instead of Sony. After all, it’s already got the existing owners. It only needs to listen to them as far as the next camera upgrade goes for the proportion who will be likely to change frequently.

The new NEX-F3 is a perfect instance of listen to the unconverted market. They want an LCD which aims forward so they can film themselves; amateurs only get one take for their home porn movies and can be very disappointed to find they’ve cut the important bits off. I am, of course, talking about guitar porn, cookery porn, motorcycle porn and not the other kind…so Sony has made the LCD flip over the top.

They have in addition made this entry-level NEX 3 model use the latest 16.1 megapixel sensor, generally agreed to be the most versatile all-round sensor on the market, and accept the accessory FDA-EV1S EVF which doubles Sony profits on any camera sold, should be buyer decide later they want an eye-level electronic finder. The battery life has been extended by 18% to 470 shots per charge, and if you buy the higher capacity 1300mAh Japanese made third party cells in place of the Sony 1080mAh ones which cost six times as much, you win twice. Except that I’ll bet the NEX-F3 adds another layer of battery compatibility protection, just like the 5N and 7 did. The third party cell makers had to update their stuff fast and warn buyers that they needed a compatible type, people owning older clone cells found they didn’t work in the new cameras.

Since this camera is the first NEX (or any Sony Alpha/NEX) to offer in-camera USB connection recharging, the odds are not just high that clone cells won’t work. It’s what bookies call a dead cert. Being able to use your iPhone charger (just a different cable) or similar USB mains-plug or in-car 5v adaptor cuts down on all the rubbish we have to carry when travelling.

To keep the distinction between entry level 3 and better 5 to 7 models clear, Sony has restrained the video to 50/60i with final 25p (European) or 24p (US) output. The better models offer full 50/60p as their top quality. But Clear Image Zoom is included, which does a pretty good job for the everyday user of providing a 2X electronic converter with acceptable full resolution sharpness. There’s no microphone input and some new software which sounds horrible is bundled – PlayMemories Home. Sony, just because you got to use words like Play, Walk, Memories, Man, Stick, Station and so on in various products does not mean they have to be repeated in child-like product names for all eternity!

Sony has added the pop-up flash from the NEX-7 to the F3. Is this a good idea? I predict some deeply disappointed flashers.

It rises just so high above the camera, and it’s not absolutely identical to the 7; the position appears comparable. The new F3 will be sold with the usual single or twin kit lenses I’m sure, and not so often with the latest 18-200mm LE (lite version E?) zoom which has been launched at the same time. This lens is a direct counterpart to the Tamron 18-200mm VC III f/3.5-6.3 which I’ve been used since early March. Though Sony has stated that the OSS (VC) is not as efficient as the more expensive Sony SEL 18-200mm, my findings using the Tamron are that it’s modified to be very smooth during video as has the AF action, which is less volatile than other SEL lenses.

Now I’m sure this lens will be very popular – the Tamron version is sharp and quite beautifully finished, with Sony’s rubberette dust attractor grip absent and a slick metal barrel skin with broad easily cleaned rubber ribs doing the zoom and focus work instead. Tamron’s £499 lens looks like £699 where Sony’s £699 will look like £299 after you have handled it with bare skin for a few minutes. Sony should issue silk gloves with all their lenses.

But here is the downside of choosing such a lens as your kit zoom for the NEX-7 and presumably for the F3. The pop-up flash just doesn’t clear the lens well enough and to use flash with the 18-200mm you must buy the accessory FVL-F20S flash which lifts the light source high enough the camera to avoid what you witness below.

You may also be unimpressed by the uncorrected complex barrel distortion of the 18-200mm Tamron at close range, demonstrated here by photographing an A2 printout of an Adobe lens correction target. Actually, the Tamron profile included in the latest Adobe Camera Raw does a nearly perfect job of straightening up this lens at average scenic distances. This profile should also work with the new Sony lens. What’s good about the Tamron is that its lens identity is recognised by ACR and the correct profile auto-selected.

What you are looking at above is the shadow of the lens, at 18mm, with the lens hood removed and the NEX-7 internal flash used. It is possible the NEX-F3 will be a very small amount better than this.

Here is what happens if you carelessly leave the lens hood on! An A2 target is much the same size as a two-face close-up wide angle portrait, or a typical pet shot or party shot; times you use flash. The shadow does not get smaller further away, but you can dispose of it by using focal lengths over 150mm. Wow!

In other words, Sony has listened to what the public wants – pop-up flash and a superzoom they can afford – but in such a compact body, with no pentaprism-shaped top to allow a good ‘lift’ when the flash is popped up the result will be more than a few unhappy beginners. That is some shadow by any standards.

The Alpha 37

And so to the second consumer-focused launch by Sony this month, the also-16-megapixel Alpha 37. You can think of it technically as a NEX-F3 in an Alpha SLT format – same ISO 16000 top but with 100 at the bottom thanks to the SLT pellicle mirror, same 5.5fps regular motordrive, similar 450/500 shots per battery charge depending on whether you use the power hungry EVF or the economical rear LCD.

You can see here how much extra height the GN10 pop-up flash gains compared to the GN6 of the F3 or NEX-7. It should clear many lenses even with hoods attached, and may well prove usable combined with the new SAM lens for the Alpha range – a slightly more compact 18-135mm f/3.5-5.6 using a type of SAM motor which is claimed to be silent and which allows DMF. Remember that earlier SAM designs with the audible motor have not allowed DMF and have even been quite picky about exactly how you set MF instead of AF. The presence of DMF in the new lens indicates that the SAM internal motor focusing may be a lot closer to SSM than to some basic flavours of SAM. I like the idea of this lens, 18-135mms can be surprisingly good though the f/5.6 long end maximum may actually be slower than many 18-200mm or 18-250mms when set to 135mm (they tend to be f/5 at that point).

Is it a Tamron? Probably not. Tamron lens locks move forward to lock the zoom action. Sigma lens locks, though traditionally placed on the left side, move back towards the camera to lock the lens. Sigma has flavours of HSM which allow DMF and others, like the HSM on their 18-250mm OS, which don’t. I look forward to reports on exactly how the 18-135mm works and whether its superior SAM makes it a hidden bargain.

And also, of course, whether the pop-up flash casts interesting shadows!

There is not a lot more to say about the A37 except that it shares most limitations imposed on the F3 such as the video format and bitrates, that it has the usual bells and whistles including an auto portrait crop framing mode, and resembles an A55 body size updated to be more ergonomic. It also has an updated A55 type EVF, not to be confused with the OLED Tru-Finder of the NEX-7, A77 and A65 but identical to the A57. There is a spectacle friendly EVF mode, which as far as I can tell reduces the image area to match the A55 (which wastes loads of its screen as a blank surround). The big improvement made by the A57 was to deploy the full area of the 1440k-dot screen instead of using it as a milky luminescent border for a small image. The downside is that spectacle wearers find the full area hard to see edge to edge.

The rear screen is 2.7″ not 3″, since this is a very compact body, and uses the double hinged up/down tilt mechanism without rotation or forward facing options.

I did not expect to see GPS in this model, but after several expeditions with the Alpha 77 I am beginning to doubt whether onboard GPS as provided by Sony is much help at all. There have been far too many entire shoots where not a single frame has GPS data. It is something I find extremely useful but it’s only useful if it works most of the time. It’s odd to see USB charging introduced in the F3 but not present in this model. Lack of communication between product teams?

The pricing of the A37 will be very competitive indeed.

With all these various May launches – NEX-F3, 18-200mm LE, Alpha 37, 18-135mm SAM – there’s clear evidence that Sony listens first to mass market dealers and to potential new adopters of large sensor interchangeable lens cameras, those moving up from compacts. Everyone who has ever passed an Alpha or NEX fitted with an 18-55mm lens to a compact zoom user will know the reaction – that the zoom doesn’t even begin to zoom, by their standards. They can’t believe you can not frame a face from twenty feet away.

All Sony’s advances are geared to making these larger format cameras more satisfying to the upgrading user.

Now we just wait for them to produce 2012’s models designed to keep the upgrading Alpha and NEX user equally happy.

– David Kilpatrick

See B&H story and links for current B&H prices/order info

hireacamera.com invest in Alpha and NEX gear!

The UK’s top camera and lens hire company, hireacamera.com, has invested in a whole new stock of Sony Alpha and NEX gear right up to the 500mm G – their A77s come with 16-50mm SSMs… here, Guy Thatcher explains their enthusiasm for Sony, filmed at the PhotoVision Roadshow in Edinburgh on Tuesday March 27th.

It’s a 1080p HD video shot on the NEX-7 by David Kilpatrick with no accessories apart from the Tamron 18-200mm DiIII VC zoom, which at one point displays a preference for focusing on the better lit, more contrasty background.

Minolta 70-210mm f4 versus Canon 70-200mm f4 L IS

The Canon 5D MkIII arrived, but I will not be reporting on that here – it is with me for a British Journal review, and that will take a little time and will also be exclusive to the BJP in print and on iPad App. So no sneak preview anywhere else!

However, with the camera came a 70-200mm f4 Canon L IS lens. This month I picked up a very cheap 70-210mm f4 Minolta AF – the ‘beercan’ original from 1985 which has a broken lens hood, the wrong lens cap (why the hood got broken) and a slightly rough focusing travel that tends to get locked into a near or far range without having a limiter.

So, since the loaner 70-200mm from Canon was in an equally well-used state, and the question keeps being asked whether the old Minolta is a match for it, I thought I would A-B the two lenses with the Canon on the new 5D MkIII and the beercan on the Alpha 900.

I call this comparison ‘can o’beer versus a yard of L’ for reasons the product size comparison should make clear:

Of course a lot of this is the Canon lens hood (anyone with a flair for geometry will spot that the narrower, shorter Minolta hood is nearly as effective, just draw a diagonal from front left to rear right of the hood to see why). And the Canon has IS built in, as well as a focus range limiter. During operation the Canon was rather noisy, making a constant whispering sound from the IS even though the USM focusing was silent. The Minolta of course zips and clunks into focus, but is otherwise silent, and the A900 in-body stabilisation did not make anything like the same level of operating noise as the in-lens IS.

Although there is no doubt the Minolta lens is less sensitive to AF commands (if that’s the best way to put it) actual targeting a new focus point and locking on seems every bit as fast. It’s nowhere near as good as the Canon at continuous AF subject tracking, but the Canon was nowhere near as good as the Minolta/Alpha combo at user-targeted aim and focus operations. The Canon spent a lot of time being out of focus and then rapidly refocusing, with my moving targets (backyard hens, if you have them you’ll know what perfect focus test subjects they provide). The Minolta spent time staying focused and not responding much.

Reviewing the results, I can only say the Alpha/beercan combo had a better success rate. Nearly all the shots were critically sharp where a good few Canon shots either didn’t get enough IS to combat shake, or maybe the IS was actually taking the edge off sharpness. This applied particularly at closer distances, where the Minolta (210mm, front group focus  and 1.1m focus distance) seemed much better than the Canon (200mm, internal focus and 1.2m minimum).

For this article, I have made 2000 pixel wide reductions from my test images. These are within the 2MB limit at high quality for images within the site. Subscribers to photoclubalpha can also access hi-res full sized images (over 70MB in total, so beware) through an additional page link provided at the end of this report.

The tree and twigs test

Our big old holly tree provides a suitably evil subject for any lens with chromatic fringe or purple fringe issues. I shot everything raw; no lens profiles were used, the conversion was done using Adobe Camera Raw 6.7Beta. Like Lightroom 4, this offers automatic analysis of CA even without requiring lens profiles. In fact, adjustable CA is entirely disabled – gone. I can tell you it works amazingly well. Lenses which have been very difficult to clean up are fixed. It isn’t even one-click – just set ‘Remove CA’ as a default, and that is it, for all lenses, for ever.

I used the tree for hand-held (with stabilisation) ISO 100 tests at f/4, f/5.6 and f/8.

I thought the beercan would be bad for fringes and CA. On the Alpha 900, it simply wasn’t. The full aperture image was surprisingly clean. The Canon lens on the MkIII actually showed more colour fringing. Both cleaned up in ACR 6.7b. As for sharpness, it seemed to me to be a draw. I picked a 3D target to avoid slight front of back focus differences influencing the result.

Above – Canon at 70mm and f/4 – click image to open 2000 pixel wide version

Above – Minolta at 70mm and f/4 (same applies, to all these example)

Above – Canon at f/5.6

Above – Minolta at f/5.6

Above – Canon at f/8 (for the f/8 images, the ACR conversion was cut by -0.30 EV exposure, as I felt both cameras had predictably overexposed a little, but the wider apertures were left this way as it emphasises any CA – since f/8 is an optimum aperture with cameras of this resolution, I aimed for the best straight conversions)

Above – Minolta at f/8.

Long end tests, moving and static, medium to close

A range of different subjects ended up being shot on both cameras in the garden. I was, at the same time, shooting various tests on Fuji X10 and Pentax Optio WG-2. If that Pentax could shoot raw files it would be a real winner because the lens is lovely! When you start poking small cameras one or two cm away from small flowers, you realise how limiting the larger format and longer lenses can be.

But the small cameras could not catch a single decent snap of hens scratching around as I worked. They move too fast and just the focus lag along, let alone the shutter lag, stops even the best compact or pocket digitals from being useful.

Here’s a Canon shot. I took half a dozen similar shots with both cameras, slightly varying in distance and with two different hens, at f/5.6 and also some at f/8, all at maximum focal length. It would be hard to say the Canon was better as the success rate was lower. It seemed to focus faster but not as accurately, with both cameras set just to use the centre sensor (as the overall frame compositions tell you).

This is 50% of original pixel scale. Click the image for a 1200 pixel square, 100% clip view.

Here’s an Alpha 900 shot with the  Minolta at the same settings, ISO 320 RAW, exactly the same ACR 6.7b parameters used (25, 0.5, 25, 0 Sharpening; 20, 25, 0, 25, 50 L and C NR; strong contrast curve; black point 0; Adobe Standard colour calibration; CA Correction enabled with Defringe Highlights but no Lens Profile; both with exposure dropped by -0.3EV, no other change to defaults).

Again, if you click this 50% view you get a 1200 pixel square clip. Remember, no web or print sharpening is applied. The red hen is a little lower in contrast but so is the Minolta lens, I think, and so is the Alpha 900 default rendering – the 5D MkIII either has less dynamic range, or processes with a steeper curve to the raw. Or Adobe simply applies more contrast to the Canon raw ‘under the hood’.

These pictures are at 1/320th for the Canon, 1/200th for the Alpha – anything less than 1/200th and hens move their heads so fast you don’t stand a chance of a sharp image. Aperture priority auto.

Close-up ability

I find the small difference between 1.1m and 210mm, and 1.2m and 200mm, significant. This is a recurring theme for me. Around 1m, differences of 10 or 20cm either way in minimum focus distance are critical. They can make the difference between working at arm’s length, within reach, or out of reach. My perfect close-up situation allows me to reach a hand out and adjust a subject, so I really like lenses which focus down to 60cm or so. I also like to be able to place my lens against glass, or right up to wires, to get shots through windows and barriers. A classic example would be a small animal in a wire zoo cage. If your lens won’t focus closer than say 1.5m, often you can’t place it up to the wire and therefore you can’t get the shot and blur the wire out. But if the lens focuses down to say 0.9m you can. So for me, any gain at all in minimum focus distance is good. I’m not keen on the way Sony’s SAM versions of once-screw-drive lenses generally lose a bit of close focus range.

Here are the results of the Canon and the Minolta at their closest focus-confirmed setting. I used ISO 320, and f/11, hand-held with stabilisation.

Again, if you click this image you will get a 2000 pixels high version. The Canon colour – or maybe the Auto White Balance – is better than the Alpha shot which follows. It may be down to lens colour transmission, as the 1985 Minolta glass is yellower than the Canon. I measured the transmission using a Kenko Color Meter (the new version of the classic Minolta Colormeter IIIF). The Minolta is roughly 5Y+5G and would need a 5B+5M filter pack to match the Canon lens transmission.

Here’s the Minolta lens shot, closer because of the 1.1m focus and 210mm focal length:

Again, clicking on the image will get you to a 2000 pixel high size.

These close-ups had me really thinking. I had to go back and check the settings. I can assure you the pix really are from a distance of 10cm apart – I did not move, I just squatted back a bit with the Canon; the lenses were at 200mm and 210mm; the apertures were both f/11, both cameras were at ISO 320, both gave the same 1/160th exposure. Yet just study the bokeh (differential focus) of the Minolta images. Look at the thickness of the blurred dry plant stem crossing upper right in the background. Look at the green leaf behind the hyacinth. Study the larger version for the focus point in each case (it’s comparable). The beercan just seems so much better able to separate out the subject from the background, without losing depth of field within the flower. Yet if you look through the two lenses from the back element end, wide open, the Canon appears to have a huge aperture by comparison – a really wide exit pupil.

Does it all prove anything?

So, what do I conclude? Well, I know from many years of using the 70-210mm that it can benefit from an even deeper hood, maybe on the scale of the Canon. It’s not a contrasty lens, and it can get some serious internal reflection – big flare patches, even veiling the entire frame. And on some earlier cameras even APS-C size, my earlier examples of this lens had been prone to very strong purple fringes. But I have never had an unsharp example and some of our best, sharpest digital shots have come from the classic 70-210mm beercan.

I’ve already been finding just what a transformation Adobe’s Camera Raw 6.7 beta (release candidate) makes with its auto analysis of the image to apply CA removal. Distortion and vignetting just aren’t significant issues with tele zooms of this type, so full lens profiles are hardly needed (and they are very difficult to make, you need a working distance most studios or homes do not contain).

Using this rather beaten-up example makes me think that it would be good, again, to find a mint condition little used one. It is a lens with interesting properties; it is a true zoom, and a constant aperture, which means that if you lock the focus down and shoot video you can zoom without losing sharpness (many modern ‘zooms’ are varifocal not parfocal, and shift focus as you zoom) and without any aperture jumps (only constant aperture lenses offer you this).

Most of all, comparing this lens with the relatively expensive and much larger Canon it’s clear that the performance is either equal, or better. Take into account advances in coatings, and the effects of age on any lens, and I would have to think a new version of exactly this same Minolta lens would be stunningly sharp and ideal within the Alpha system. It would be a perfect companion for the 16-50mm, or 24-70mm, on APS-C or full frame.

Full size images for subscribers only

If you are a registered subscriber to photoclubalpha, you can go to our download page for this article, and get the full size (JPEG quality 10, sRGB) images for all the shots here except the chicken pix which are already available clipped as 100% views. It is very interesting to study the twigs at the extremes of the 70mm shots from both lenses, look at the level of colour-fringe induced tinting to out of focus details, and affirm that the legendary status of the ‘beercan’ may indeed be deserved.

And, as a final point, though I am sure the Canon will win me over in low light situations and many other ways, these tests certainly proved that the Alpha 900 has not been made obsolete by almost four years of progress.

– David Kilpatrick

 

The EVF future

At photokina 2010, Paul Genge from Sony pretty much told me that Sony’s future lay in the EVF (translucent mirror or otherwise, Electronic View Finder) models. He was not able to say anything firm. Since then, I’ve spoken to him on several occasions and he has repeated that Sony left all options open but the EVF design was likely to be the way ahead. What he has not said directly to me is that conventional SLR design – Optical View Finder – was off the roadmap.

EVF does away with the need for the finder to be positioned anywhere near the optical axis. Noses can safely hit thin air not a rear screen. Unless you are left eyed. NEX-7 with ocular surround fitted.

Although Sony did not attend Focus on Imaging 2012, the UK website TechRadar secured an interview statement during Focus week, in which Paul appears to have confirmed without ambiguity that the future was EVF-only, and that the forthcoming full frame successor to the Alpha 900 would be an SLT-EVF design. At the same time, we learn that the 70-200mm SSM G and 70–400mm SSM G lens are to be revised for 2013.

We know, from several sources, that Sony is not currently making all its lenses – even the high end ones – in one facility, or in its own workshops. I believe the 70-400mm SSM G is a contracted-out design and that the 70-300mm SSM G has always been made by a third party lensmaker. This is nothing new; the Minolta 100-400mm APO was patented by Tokina and sold to Minolta as an exclusive (no-one else got the lens) and the same company made some if not all the 100-300mm APO lenses. Using different sources means that various types of coating are appearing; traditional Minolta style – the multi achromatic coating, Carl Zeiss T*, Tamron’s BBAR-derived coatings, some Sony multicoatings of unknown pedigree on Chinese SAM lenses, and a new water and oil resistant coating due to be used for the revised 70-200mm and 70-400mm.

This coating is nearly always combined with weather or splash proof design, and companies which have the ability to apply it include Hoya (Tokina, Kenko, Marumi, Pentax), Olympus, Canon, Nikon, and Sigma. Sigma is very significant as they have installed new coating lines recently and they are going through a bit of a subcontracting boom. Their facilities are all in Japan, they are on high ground and were slightly affected by the earthquake but not by the tsunami. They have a long history of building lenses and cameras for Leica, Carl Zeiss, Panasonic, Olympus, Canon/Kodak and interchangeable lenses for nearly all the major names.

If the high end tele zooms are to be revised, weatherproofing and the new coating will certainly arrive along with a synchronisation of lens appearance and finish. But I’m willing to bet something else is involved. The SSM focus system is only partially suitable for contrast-detect operation. It works, on static subjects, but unless some major advance is made in CD-AF it’s lacking the refinement and speed of the AF found in SEL (native Sony NEX) lenses. I’ve tested the 70-400mm on the LA-EA1 with NEX-7, I can work with the lens comfortably on most subjects and the camera is very good at refusing to take the shot until focus is 100% locked.

All that just to get 2X the magnification – NEX-7 with LA-EA1 and 70-400mm SSM G (an operational kit, if not fast) compared to Tamron 18-200mm NEX lens with the correct type of contrast-detection friendly focus motor and protocols.

What Sony must surely want to do is dispose of the SLT (‘translucent’) pellicle mirror and the Phase Detection AF module. It makes most sense to focus, meter, view and expose from one single sensor. In order to do so, lens focus motors need a slightly different control protocol. SSM lenses are already CD-AF compatible, as are SAM onboard focus motor lenses, but they don’t match the NEX system SEL lenses. Sigma HSM and Tamron USD Alpha mount lenses are not CD-AF compatible and do not work correctly on the LA-EA1 adaptor. Upgrading matters most with tele lenses, and they are also most likely to be used in adverse weather for wildlife, news or sports. So my guess is that the upgrade to these lenses will be comprehensive and that it will look forward to possible Sony Alpha bodies with either no SLT mirror, or a movable SLT mirror and choice between PD-AF and CD-AF.

As for the EVF itself, it’s one stage away from being better than a very good optical finder on balance of qualities. Unlike optical finders, the EVF is not susceptible to user eyesight error (incorrect dioptre correction, combined with eye focusing accommodation) and presents the user with a low resolution but otherwise very accurate view of the image focused on the sensor. It can do this at light levels where optical finders become difficult to use, while also presenting a review of the captured image if desired – ‘shot success’ confirmation.

Differences between the ‘identical’ EVF of the NEX-5n accessory finder FDA-EV1S and the NEX-7 fixed built-in version are mostly down to the difference between the 16 megapixel generation 2 sensor, and the 24 megapixel. Response speed, low light noise, quality of colour and contrast are all influenced more by the two very different sensors. User observations that one is better or worse than the other will nearly always be down to this, and variations in settings between the two cameras compared.

There are things you can do on an EVF, such as magnifying a focus point well away from the centre, which simply can’t be done at all with an optical finder and may not always be convenient to do on a rear screen. The fact that EVFs permit eye-level video shooting, and that video is now a permanent feature of the Alpha class of camera from entry to semiprofessional, makes the EVF design change more inevitable.

Paul Genge had a short exchange of information with me when I was considering selling my Alpha 900 and all my frame Alpha lenses (after starting to use the A77). He said I’d regret selling my good full frame lenses when I replaced my Alpha 900 with a full frame model I would just not believe. His message was ‘you wait – you’ll not regret it’. So, I sold my old Minolta-era full frame lenses and bought myself a brand new 28-75mm f/2.8 SAM, Sony 50mm f/1.4 (replacing Minolta vintage), a 24mm f/2 Carl Zeiss SSM, and a 70-400mm SSM G. I kept the Alpha 900  and a few lenses I like which are unique in their function, such as the Samyang 85mm f/1.4 manual, the Sigma 70mm f/2.8 Macro, the Sigma 12-24mm and an old 16mm f/2.8 full frame fisheye. Instead of getting out of full frame, I re-invested in it.

I’m expecting the Alpha 900 replacement to be either an SLT design like a scaled-up A77 with 36 megapixels, or a second generation hybrid SLT design with a mirror you can raise to use CD-AF or manual live focusing. I’m hoping that it will appear with a new 28-75mm, 24-70mm or better midrange f/2.8 with improved SSM, weatherproofing and new coatings like the 16-50mm f/2.8 DT.

– David Kilpatrick

Sony DT 16-50mm f/2.8 SSM

I’m about to offend myself. I own this lens, and I know how upset owners of brand new lenses get when someone says it’s not perfect. Well, the 16-50mm SSM is far from perfect and if you know how to check out lenses, you’ll agree should you be lucky enough to own one. It’s a compromise. But I love it.

Here’s the problem; this lens has such soft corners and complex distortion at 16mm and f/2.8 that it makes the NEX’s legendarily reviled* 16mm pancake look like a Super Angulon in disguise. It’s got a curved field at 50mm and stopping down does not always bring distant scenes into perfect focus across the frame. It suffers from rampant chromatic aberration which just becomes a dead-sharp fringe on stopping down. *Not by me!

This shot was taken on a preproduction A77 and 16-50mm. I was not supposed ever to show it. But I know there is no fault with the shot, the pre-release gear was just fine. And I really like the minimum focus, at 50mm, at f/2.8!

Yet it also has exceptionally high central sharpness, great colour and contrast, and a lovely quality to its differential focus. That’s the old traditional English-language term for the context in which people over-use the term ‘bokeh’, and deserves to be revived. With f/2.8 to play with across the entire zoom range, you can use differential focus creatively. At medium settings, 24-35mm, the distortion disappears and the sharpness extends corner to corner wide open. You have to set it to 50mm to lose the edge.

More than this, the 16-50mm SSM is a video-tuned lens. Its natural host camera, the Alpha 77, crops the frame considerably when shooting HD video. The soft corners and even most of the distortion don’t get a look in, they are outside the video area. The standard and 3D pan modes of the A77 also crop out the problems. The focus action and silent supersonic motor of the 16-50mm are ideal for A77 video shooting with active AF (if you want it) during takes. The f/2.8 aperture allows the lens to be stopped down to the optimum f/3.5 used for movies and also for high speed (12fps) mode, and have no issues with aperture shifts if the focal length is changed.

The Carl Zeiss 16-80mm, left, is smaller than the Sony 16-50mm SSM.

After testing the lens, I decided to keep my 16-80mm CZ which is now five years old. It’s not just the different quality of image produced by the CZ coatings and design, or the very slighter better close-up ability (you can’t get quite as close but at 80mm the subject scale is a touch bigger on the CZ – the 16-50mm wins at 16mm, where getting two and half inches closer to the subject makes a real difference). The CZ is lighter, takes 62mm filters rather than 72mm, and is considerably smaller with lens hood size adding to the difference. Working in the field, it is a lens which can easily be held in the hand with fingers free to operate the lens-mount release button, hold a rear cap, or even another lens – the usual juggling of two lenses which photographers get used to.

With lens hoods fitted, the overall relative sizes become more obvious. The SSM lens has an attractive metal front ring, a new trademark of higher-end Sony lenses, shared with the 70-400mm G.

The 16-50mm is at the limit of diameter, shape, balance and weight to be safely gripped with another lens in the same hand, even briefly during the process of swapping over. That’s not to say it is cumbersome, just that the 16-80mm is faster and more secure to work with because it’s that little bit smaller and lighter.

Once on the camera, I have to say I like the overall balance created by the 16-50mm. It tends to help the A77 hang lens-down, a position I prefer with the camera under my left arm and the strap over my shoulder. The zoom action is super-smooth and well damped, and also has a lock which operates at 16mm to prevent gravity-fed creep, and keep the action firm in future.

No creepy zooming – thanks to Royal Mail, and their neat Sony-coloured rubber bands which are a perfect fit to go on the CZ 16-80 and make the zoom action super-smooth and stay put!

My CZ is now well used and over-free in action. A rubber band to go over the front end of the zoom ring is the cure! You can get proper broad Alpha-ish orange silicone rubber ones from Lens Band as well as the free orangey-red ones used in the UK to hold our postal deliveries together. My way of using a rubber band is not quite the same as Lens Band’s method, it goes over the flush seam between zoom ring and lens barrel on the 16-80mm and it doesn’t just hold the zoom, it smooths the zoom action.

The zoom lock on the 16-50mm was missed from the 16-80mm… missed by all owners, that is. The 16-50mm has a type of raised  moulded marking. Durable? Maybe not. The similar raised ‘P’ on my A77 mode dial is now a ‘D’ having lost its stalk.

The best shots I’ve got from the 16-50mm are as good as the best from the 16-80mm, but I can trust the CZ more in the 35-80mm range. From 35-50mm the SSM becomes increasingly soft and sharpness towards the edges of the frame can be poor. At first I thought this was only at full aperture, but shots at apertures like f/5 and f/7.1 were affected. I compared my own lens with two pre-production Sony samples I had used months earlier; we were told not to release images taken with these. The degree and type of sharpness loss was identical, enough for me to conclude this is a characteristic of the lens and not a coincidental case of rogue lenses.

Major plus points for the 16-50mm include focus accuracy, which is much better than the 16-80mm on most Alpha bodies. The f/2.8 aperture activates higher accuracy sensors, such as the Alpha 700’s central point and the extended range of the 11 cross sensors of the Alpha 77. When used on the Alpha 580 for live view pre-shot AF, or on the NEX models with the original LA-EA1 contrast-detect AF adaptor, both focus speed and accuracy are optimum.

The SSM lens has an AF/MF switch but no on-lens button control. Direct Manual Focus is supported and unlike SAM (conventional in-lens motor) lenses, the supersonic drive is not damaged by moving the focus ring without engaging MF.

Despite the large area of glass, the 16-50mm is no more prone to flare than the 16-80mm. The new Sony coatings used for this lens (water and oil/dirt resistant, very hard, similar to Nikon’s NanoCrystal) do a great job. And, of course, they are part of the final reason I am keeping this objective. It’s weatherproofed to some degree, as is the Alpha 77 body. Reports vary between dowsing with a bucket of water without harm, to reluctant use in slight drizzle. I think I’ll get myself a Sigma EX DG filter for my lens, as these have the same coating now and they are about the best slim-mount UV filters made for optical quality without paying Hoya Pro1 Digital prices.

Also, with the 72mm filter thread, there seems to be less need for a super-slim filter. The CZ lens suffers from very strong mechanical vignetting at both ends of the scale, producing dark corners at 16mm or 80mm alike. At 16mm, depending on the position of the SSS/AS sensor-based stabilisation, a dark corner can be well enough defined to need cloning out or the image cropping. The 16-50mm SSM has no such issues. Not only is optical vignetting well-controlled, the mount does not create any dark corners.

These dark corners are created by adding vignetting and grads in raw processing. The 16-50mm, at 24mm, turns in great shadow to highlight detail without a hint of flare; 1/50th at f/9, ISO 100, hand-held with SSS – mid-January in the Scottish Borders. When I pulled up to shoot this, a car with two camouflage-kitted big Nikon and Canon multi lens ‘serious enthusiast’ shooters pulled in alongside. They were still struggling with tripods, a kissing-gate, a stone wall, lenses and car by the time I’d got the sunray shot (which disappeared in seconds) and left. I just carry my Alpha 77 – but then, I’m not a ‘serious enthusiast’ and my ideal camera would be invisible and with me all the time. I’m a panda – sees shoots and leaves.

Though Sony owners may be reluctant to admit it, the SSS mechanism can decentre the sensor and if the lens coverage is so tight it barely covers the corners of the frame (16-80mm and 16-105mm both guilty) you can get the occasional asymmetric dark corner. I’ve never seen this yet from the 16-50mm. But when I check the 16-80mm against the 16-50mm using the Alpha 900 full frame finder to examine the image circles, if anything the 16-80mm has more apparent clearance round the extremes of APS-C, with a softer gradation. The 16-50mm has a tight exact circle.

I have also checked the way the 16-80mm and 16-50mm focus as you zoom. Though the CZ is not perfectly parfocal. That term describes a zoom which retains exactly the same focus point, as you zoom. Video and TV camera lenses are parfocal, otherwise, the focus might ‘go off’ during a zoom. The CZ is nearly parfocal, just a touch varifocal. That’s the opposite term, and means a zoom which changes the focus as you change focal length. At one time, varifocal lenses were not actually called zooms; they date back to the 1920s, and J H Dallmeyer’s adjustable telephoto lenses. Konica made a famous 35-100mm f/2.8 Varifocal in the 1970s.

Silent focus, silent A77 camera (almost), 16mm and ISO 800 at f/3.2 – with ACR profile correction. Café society, Hawick.

The 16-50mm is either a perfect parfocal zoom, or so close you will never know. It is possible to focus at 16mm, and zoom in to the subject. This can only happen with very accurate focus, and a parfocal zoom. Try it with the 16-80mm CZ and you will see the image go out of focus, not to mention clicks and jumps in brightness changing as the aperture adjusts (that’s because the CZ is a variable maximum aperture lens, f/3.5-4.5). The 16-50mm can zoom during video, in or out, without losing the original focus point and without any brightness change or aperture adjustment.

Now you may understand why I want to keep this lens even though – unlike some enthusiastic new owners – I find that its sharpness across the field is not actually as consistent as the CZ. It is a far better overall match to the Alpha 77 especially for video work. But in January, I chose the CZ in preference for a week abroad, and I would most likely do so again.

The Alpha 77 (and 65) include built-in correction profiles for this lens. They are so effective that when I first saw JPEGs from it, I thought the geometry was perfect. If you intend to use the lens for JPEG and movie shooting, any criticisms can be moderated. The correction profile can not improve sharpness, and it does change the effective focal length slightly so than you don’t get a true 16mm.

This is a straight-on shot of the Adobe chart used (not this way, shot nine times per full frame) for profile creation and it shows how very bendy the 16mm f/2.8 setting is at this range, the target is A2 size. Click image to see full size.

This is the same, but JPEG with the in-camera correction enabled.

This is the same, with the Adobe Lens Profile I have created and sent to Adobe, applied in raw conversion of the first example. Please note that the Adobe profile applies to shots taken at three times this distance or more – these profiles, like the in-camera profile, are never much good at rigorous correction of geometric targets shot a couple of feet from the lens.

For Adobe Camera Raw, I have made a profile for the lens which covers three apertures (f/2.8, f/5.6, f/11) and three focal length settings (16mm, 24mm, 50mm) between all of which ACR will interpolate correction values. Because the extreme corners of the image go so much out of focus when shooting the target (refocusing ruins the profiling process) I don’t think this profile handles chromatic aberration as well as it could. The profiling program needs a sharp image of the RGB colour channels to work out their relative scale, which is how CA is corrected. Applying 150% CA correction, instead of the default 100%, seems to improve the conversion.

Here is an uncorrected real-life shot on the 16-50 and 16mm, 1/125th at f/9, ISO 200 (click image for full size 24 megapixel view, and note the chromatic aberration at the left end of the shot especially).

This is the same raw file processed using the Adobe Lens Profile I have produced for the lens.

You can dowload from here the 16-50mmA77rawAdobeLensProfile, hopefully it will also become available from Adobe’s user-created download area. Unzip the file to extract the .lcp file, and place this in your Application Support/Adobe/CameraRaw/LensProfiles/1.0/Sony directory. You require Photoshop CS5 to use the profile.

So what is my conclusion? I do not agree with some of the over-the-top reviews including one to be found on the Sony store USA site claiming it’s the best zoom of this range and aperture for any system. It is not, you get more than you pay for (much less than a lens of this specification might cost from others) but not an optical miracle. You get a very well designed optical compromise housed in a particularly good mechanical design. I would compare it favourably with Olympus’s waterproof ‘Top Pro’ range fast lenses for 4/3rds. I think it can claim to match Canon’s 17-55mm f/2.8 and Nikon’s similar lens, I’ve used both and the Sony is rather neater. It’s probably a little better than the Pentax/Tokina 16-50mm f/2.8, which it most resembles but definitely is not related to.

It’s different from the CZ 16-80mm, not better or worse; it has a different mix of good qualities and failings. The obvious competitors are Sigma’s 17-50mm f/2.8 OS and the Tamron 17-50mm f/2.8. The Sigma offers Optical Stabilisation. The Tamron is now an older design, replaced by a new VC stabilised version for other mounts, but still issued without stabilisation at about 60% of the price of their VC versions, for Alpha. It is the lowest-cost option in this range.

The Sony Alpha SSM 16-50mm f/2.8 DT lens is supplied with rear cap, 72mm lens cap, and bayonet petal hood. It does not come with a case or pouch. My lens was purchased ‘white boxed’ – that is, split off from an Alpha 77+16-50mm kit by a dealer and priced accordingly. The lens is only available with the A77, or as a separate item; it is not currently offered as a kit option with the Alpha 65 or other models.

– David Kilpatrick

Check the current price from B&H Photo Video – remember, B&H ship worldwide and for the UK buyers, offer a UK service.

Technical Data (Sony information) amended to remove nonsense

  • Lens Type : Standard Zoom
  • Focal Length 16-50mm (35mm equivalent 24-75mm)
  • Lens Mount Type : Sony A-mount, SSM in-lens supersonic motor focusing, electronic coupling
  • Aperture (Max.) : f/2.8
  • Aperture (Min.) : f/22
  • Filter Diameter : 72mm
  • Lens Groups-Elements : 13 groups, 16 elements
  • Minimum Focus Distance : 12″ (30cm)
  • Distance Encoder : Yes
  • Distance Scale: Yes
  • Angle of View: 83°-32°
  • Non-rotating Filter Thread : Yes
  • Aperture : 7 blades (Circular aperture)
  • Lens Weight : 20.4 oz (577g)
  • Maximum Magnification : 0.2x
  • Dimensions (Approx.) : 3-1/4 x 3-1/2” (81 x 88mm)

Compare the 16-80mm Carl Zeiss technical data:

  • Lens Type : Standard Zoom
  • Focal Length 16-80mm (35mm equivalent 24 – 120mm)
  • Lens Mount Type: Sony A-mount, in-body motor focusing via mechanical drive coupling
  • Aperture (Max.) : f/3.5 – 4.5
  • Aperture (Min.) : f/22 – 29
  • Filter Diameter : 62mm
  • Lens Groups-Elements : 10 groups, 14 elements
  • Minimum Focus Distance : 14.4” (36cm)
  • Aspheric Elements : 2 aspheric
  • Distance Encoder : Yes
  • Distance Scale : Yes
  • Angle of View: 83°-20°
  • Non-rotating Filter Thread : Yes
  • Aperture : 7 blades (Circular aperture)
  • Lens Weight : 15.7 oz (445g)
  • Magnification : x 0.24
  • Dimensions (Approx.) : 2 7/8 x 3 3/8” (72 x 83mm)

Sony’s Zeiss 24mm f/2 Distagon ZA SSM T* reviewed

The Sony Zeiss 24mm f/2 SSM Distagon ZA T* is probably the best, or equal to the best, in its class. It may perhaps be the best ever 84° angle fast lens ever made for the general SLR system market, and I would happy to pitch it against any of the current equivalent offerings for medium format digital.

The initial journey with the 24mm f/2 was not one of intensive companionship – I am long past the stage of getting hold of a wonderful lens and then shoehorning all my photographs into that lens’s view just because I love the glass. I’ve been through that phase. I remember when I was 18 and my then fiancée (Shirley – still here!) bought me a brand new 35mm f/3.5 SMC Takumar, my first ever multicoated lens as well as my first new boxed product. I shot almost everything with that lens for a month…

A full-frame Alpha 900 study at full f/2 aperture. Check the sharpness in the central – very limited – sharp focus zone by clicking the image for a full size version.

My review of the 24mm appears in the British Journal of Photography for January 2012 but was written in November, and at the end I comment that I do not think I would buy one. Well, between writing that and publication – after returning the test lens loaned to me by Paul Genge of Sony UK – I placed my order. I sold a set of lenses including a 28mm f/2 Minolta RS and a 17-35mm Konica Minolta D to pay for it.

Check current availability and price at B&H Photo Video (opens in a new window will not lose this page).

Why?

It was partly medium format which persuaded me. I’ve been experimenting with MF digital, first using a Hasselblad with a Phase One P20 and then shifting to a Mamiya 645 AFII with a 22 megapixel ZD 37 x 49mm back. Once you put the Zeiss on the Alpha 900, the image quality jumps to match the level of a similar MF pixel count. And without spending into the tens of thousands you can’t match the angle of view at a higher pixel count.

These two cameras both shoot 22 megapixels over a 16 x 12″ print shape (the Alpha 900 being cropped) and both were current in 2008 – though the Mamiya ZD model was shortly to disappear. And the two lenses have similar coverage.

I looked at the corners of my MF shots on a 35mm lens (nearly identical angle of view) – to be clean, they demanded f/11. And then I looked at the corners on the Zeiss, which are even cleaner by f/4. Finally, I considered what Sony may have in store – 36 megapixels on full frame. Everything I’ve seen from the 24mm – including its performance on the A77 and A55 – indicates it will not run out of resolution even if full frame goes well over 50 megapixels.

Then I had the job of looking back over the Alpha 900, Alpha 55 and Alpha 77 pictures taken with the 24mm, and preparing some comparison shots. This was when I realised that my normal line-up of zooms, no matter how good, never got the same from any camera – APS-C or full frame – as this CZ prime. It may be bulky, take large filters, and cost nearly £1,000 but no other solution on any format from NEX through A77 to MF offered the same as the 24mm on Alpha 900. You will, however, be surprised later on to see just how well the tiny NEX 16mm f/2.8 does in comparison when both lenses are stopped down to f/8.

The 35mm 2:3 format shape offers a bit of vertical composition ‘rise or fall’ potential compared to to 3:4 shape of my Mamiya with 35mm wide–angle. Beyond this, the 24mm offers both CD and PD focus with different adaptors on the NEX system, and smooth near-silent AF during video on the Alpha 65/77 and future models. It’s both future-proof and a future classic.

Photojournalism or architecture

Because the 24mm has a fast f/2 maximum aperture, it’s seen as a choice for news, documentary, reportage, sports, and close quarters party or family shooting. Though a little vulnerable because of its size, it does this job well. Unlike tele lenses, any mark on the front glass of a wide-angle like this will show in pictures when the aperture is stopped down. Special care should always be taken of retrofocus and fisheye lenses with vulnerable front elements, my own lens will get a Sigma EX DG 72mm UV filter. Why Sigma? I ran a series of ad hoc tests on filters and these turned out to be just as good as Hoya Pro 1 Digital at half the price, and with better multicoating.

At f/2, struggling with light for a hand-held shot with 1/40th at ISO 1600 on the Alpha 55, the 24mm showed surprisingly clean imaging from the boat to the lights on the cliff top.

Here’s a shot taken at f/2.5, 2/3rds of a stop down from wide open – a sensible aperture to give that hint of extra depth of field and improved optical performance. Click the image to view a full size A55 image on pBase.

When fitted to my A55 or A77, the 35mm-equivalent field of view is also a good general lens for photojournalism (what you get is more or less a Fuji X100 equivalent, but hardly pocketable). The performance over the APS-C field of view is so good that working at full aperture carries little penalty at all except restricted depth of field. The geometry and field flatness over the restricted field mean  you could use the lens for artwork copying and get a better result than the 50mm f/1.4 of 30mm f/2.8 SAM macro will produce.

Over full frame, this technical excellence makes the lens attractive to the commercial, industrial and architectural photographer. Whenever you need to apply a strong software correction, focal length figures are thrown out of the window. For example, once the on-board lens correction in the A77 is applied to the 16-50mm f/2.8 SSM lens at 16mm the true minimum focal length equivalent becomes close to 17mm not 16mm.

Hasselblad’s 28mm superwide for its HD series cameras has strong barrel distortion, relying on in-camera and Phocus raw software converter functions to remove it. So while the lens claims to be a 17mm equivalent, that is only true over absolute full-frame 645. On their digital sensors, it’s only equal to a 21mm and the correction means the true crop is more like a 23mm.

A second effect of applying any in-camera or post-process distortion correction is loss of true image pixels. Either you crop the frame after sampling down, or the image is interpolated upwards to fill the frame. Both solutions are far from satisfactory because unlike a fixed interpolation, the value ranges from 0 to whatever maximum is involved (typically between 3% and 7%) and all of this is never a clean ratio.

Above: a sea horizon (the top of the crop is the top of the frame, and it is full width). Top, CZ 16-80mm at 16mm 0n Alpha 77, uncorrected, showing complex wave-form distortion as well as vignetting despite stopping down to f/11. Centre: CZ 24mm on Alpha 900, uncorrected, at f/13. Bottom: 24mm after applying a 2% barrel distortion correction. Click image to view a larger version.

Here the 24mm CZ shines. It really uses all the 24 megapixels of the A900 or indeed the A77, because geometric correction rarely needs to be applied. It has a true 24mm focal length which does not need to be quietly changed to 25mm or 26mm by applying a lens profile. If a 35mm retrofocus AF lens was made for MF digital to this standard, even without the f/2 aperture, it would be hailed as a world-beater. The most that’s needed is a correction of 2% (+, removing barrel distortion) in Adobe Camera Raw and this restores something like a sea horizon near the top of a landscape format frame to a perfect straight line.

No correction is applied here to this full frame 24mm Alpha 900 image – a central horizon, and straight lines which are not parallel to the frame edge, make the 2% distortion (similar to many standard 50mm lenses) no issue at all.

For many subjects, depending on the distance and a ‘rigour’ of the shot (the sea horizon is the most demanding example) no correction at all will be needed. This applies to most interiors, and always to scenes like mountain views or forest landscapes where there is no perfectly flat horizon.

The Alpha 900 is so close to MF digital quality I should really forget the attractions of MF systems. Nearly everything I see from them which impresses me is down to using prime lenses of first quality like the Zeiss and Mamiya 80mm f/2.8 standards and working in a methodical way often using a tripod, minimum ISO, mirror-up operation. Applying the same parameters to Alpha full frame lifts the end result to match – and the CZ 24mm f/2 is a key to unlock that quality.

At f/14, the 24mm is not losing detail sharpness on the Alpha 900 as long as the correct raw processing parameters are applied. To secure this depth of field, f/14 was needed – a medium format camera would require f/27. Holding the camera, viewing and composing this shot were all aided by the ergonomics, weight and viewfinder quality of the Alpha 900. Click image for a full size version on pBase.

This is a dual-purpose or multi-purpose lens. Where the 16mm focal length of the NEX SEL 16mm f/2.8, the Alpha SAL 16-50mm f/2.8, the CZ 16-80mm or SAL 16-105mm all cover the same nominal angle not one of these has the same neutral geometry, even illumination and good corner to corner sharpness at wider apertures. Corrected by software, they don’t have the same true angle and the outer field can become noisy because of extra sensor-mapping gain applied to reduce vignetting.

The size and SEL comparison!

But I would like to show you something surprising. I am a great fan of the 16mm NEX f/2.8 pancake, which is one of the few such lenses made to have a positive (pincushion) simple distortion pattern and a cup not cap shaped field of focus. It is a revolutionary inverted telephoto design of great simplicity, with only 5 elements, enabling the lens to be 16mm focal length yet have a rear node position over 20mm from the sensor – thus avoiding all kinds of vignetting and colour shift problems.

People who don’t understand how to use a focus plane where the corners are focused FURTHER than the centre – the exact opposite of the CZ 24mm f/2 where the corners are focused CLOSER than the centre – do tests like landscapes wide open and wonder why the grass either side of their feet dissolves into blur. Actually all the little 16mm needs is modest stopping down, as would be applied by any professional using a Super Angulon for that matter, to f/8.

First of all, have a look at some lens sizes. I like this shot, as it shows just how big CZ had to make the 24mm to get what they did. It dwarfs the SEL 16mm for NEX and the classic Minolta 28mm f/2 RS:

I’d like you to see the exact comparison between Alpha 900 with 24mm CZ and NEX-5 with SEL 16mm.

This is the A900 and 24mm, entirely uncorrected and uncropped – the building on the right actually does not have a straight wall, don’t be fooled into thinking there’s a sudden burst of barrel distortion! Aperture f/8.

This the NEX with 16mm, corrected in ACR; I’ve tried to keep the camera positions very close but this was real-time shooting and with viewfinder versus screen composition, not so easy. You can see that the 16mm has slightly less true angle of view when corrected but don’t judge from the foreground flower tub, just check the horizontal angle. This is also at f/8.

You can click each image and view a full size JPEG. I have made both of them 24 megapixels, exporting from the NEX to the same size file as the Alpha 900. That may be unfair but you can judge. My opinion is that both the NEX 14 megapixel sensor and the SEL 16mm are underestimated by far too many owners; as far as ISO noise handling goes, the 16mm f/2.8 on NEX is actually as ‘fast’ as the 24mm f/2 on Alpha 900 but that comparison may change with future full frame bodies. As for depth of field, the f/8 shot on APS-C would need to be at f/13 on full frame to match, but in practice both are well covered.

Using the NEX 16mm in different conditions would produce a different result – wide open in a room interior, the corners would be likely to look very blurred. My scene above conforms to the cup-shape focus plane of the NEX lens, and works against the cap-shape focus plane of the CZ 24mm.

Remember as a general rule: barrel distortion = corners focused close than centre. Pincushion distortion = corners focused further away than centre. Moustache or wave form = a doughnut normally of closer focus between centre and corners, but when a full frame lens with this type of distortion (like the 16-35mm CZf/2.8 – or a more extreme example, Canon’s 24-105mm f/4 L) is used on APS-C, you get this doughnut at the corners and more or less have straight barrel distortion not waveform. No distortion at a given distance usually means a flat focus field, the quality which Carl Zeiss highlighted when naming the Planar lens.

Alternatives to the 24mm

The best way to get the 84° coverage with similar near-perfect rendering is to go for the mid-range of a high end zoom. As it happens, Sigma’s 8-16mm is better at 16mm than any of the above-mentioned APS-C options and you can also get a pretty good 16mm from their 10-20mm options and Tamron’s 10-24mm. Tokina’s 11-16mm f/2.8 is weakest at 16mm, best at 11mm. The older Sony 11-18mm is not wonderful at the longer end.

On full format, 24mm at the bottom end of the 24-70mm CZ is no match, it has more distortion and softer corners; 24mm in the middle of the 16-35mm CZ f/2.8’s range is better but with strong complex distortion, more even than the Konica Minolta 17-35mm f/2.8-4 D lens (which manages f/3.2 wide open at 24mm). You might think Sigma’s 12-24mm full frame zoom could be good at 24mm, and perhaps version II HSM when it finally become available for Alpha will prove to be. The original, which I still use mainly for its superb 12mm results, places its worst extreme of field flatness deviation at the image edge when set to 24mm.

I have used Canon’s 24mm f/1.4 USMII and this is faster, larger and more expensive than the Sony CZ lens in almost perfect proportion. Like the CZ f/2 it is a nearly perfect lens, with a hint more barrel distortion and slightly soft extreme corners on full frame wide open. The same goes for the Nikon 24mm f/1.4. I’ve also used Canon’s 24mm TSE tilt-shift and this lens betters the CZ for technical and architectural uses, as it should – so does their 17mm f/4 TSE, which has no match in any format. But such lenses can’t also be used for everyday autofocus image grabbing whether professional or family.

Last question, then. If such a perfect lens can be made at f/2, surely all the affordable 24mm f/2.8 designs could be just as good? We wish! Wouldn’t it be great if the classic Minolta 24mm f/2.8 AF which Sony never transferred to the new Alpha range proved to have the same optical excellence as the CZ? It does not. Nor do the Canon 24mm f/2.8, or the Nikon, or anything made by Pentax or Olympus, or even Leica.

The 24mm f/2 used at f/2.8 on the Alpha 55. Try this with a classic Minolta 24mm f/2.8 and even on APS-C you won’t get the same corner to corner even illumination. Here the focus is on the distance, not the tourists – they are also showing a surprising amount of movement at 1/40th. Click the image for a full size view.

This 24mm is the most recent AF 24mm prime lens to have been designed for full format. Zeiss have designed a slightly more complex manual focus 25mm f/2 Distagon for Cosina partnered manufacture, available for Canon and Nikon, since Sony showed the 24mm at photokina 2010. But Sony’s full-frame DSLR rivals, Canon and Nikon, have not gone for this sub-£1,000 RRP ‘moderately fast’ 24mm niche.

If there’s one competitor, it is Sigma’s excellent 24mm f/1.8 EX DG, which uses a larger 77mm front diameter glass unit to reduce vignetting to the absolute minimum. Distortion is higher, and the lens at present has no HSM version. This makes it less future-proof for Alpha system owners, and also less compatible with NEX and with video shooting in general.

Features of the 24mm

Because it’s a fixed focal length, the 24mm is a very plain lens – it has only two controls and one moving ring. There is an AF/MF switch, though unlike SAM lenses this lens can always be controlled from the body. With SAM type lenses (built in non-supersonic focus motor) it is essential to use only the lens switch, and never to use the body switch instead while leaving the lens set to AF. This is because any attempt to focus manually may damage the gears and motor unless the switch on the lens is specifically disengaged.

Manual focus or held focus can be set or toggled using the single on-lens button. New Alpha models like the 77 allow a wider range of functions to be assigned to the lens button, which is described in the menus as a Focus Hold button. Direct Manual Focus is also supported on bodies which offer DMF, meaning that once focus is confirmed and locked by your pressure on the shutter button, you can fine-tune focus by eye before firing.

The manual focus action is very smooth and well balanced, not too light and not too short in throw (which can be an issue with shorter focal lengths. The focus scale is minimal, behind a traditional Minolta-style clear window, with a depth of field indicator to the minimum f/22 aperture. Really, such markings mean little today as we expect so much from higher resolution sensors. It is time that Sony, and others, built parameter-governed DoF calculation into firmware.

Here, f/5.6 was judged to be fine for the degree of differential focus wanted – at ISO 400, by tungsten kitchen spotlights and window light mixed, on the Alpha 77 hand-held with SteadyShot and manual ‘peaking’ focus.

The CZ design is clearly corrected for medium distance work but retains its performance for close-ups. Unlike Sigma’s design which achieves 1:2.7 image scale, or the new manual Zeiss 25mm which focuses down to 18cm and 1:4, the Alpha lens focuses to 19cm (actually, I make it 18cm as the scale goes beyond the 19cm marking) and manages a 1:3.4 image. Don’t be fooled by distances! The front element of the CZ is already 12.2cm from the sensor plane, and the lens hood takes another 3cm or so. The actual clearance when shooting at close range is minimal. For comparison, the SEL 16mm f/2.8 for NEX will only focus down to 24cm, and the front of this lens is only 40mm from the sensor, leaving a clear 20cm between camera and subject. The Nikon and Canon f/1.4 designs are limited to 25cm and are, quite simply, nothing like as useful for close-ups as the CZ.

You might think that the 16-50mm f/2.8 or the 16-80mm CZ could match the combination of wide angle and close focus found on the 24mm – but not so. To get similar close-ups even at a 24mm setting is not possible – an extra 6 or 7cm in minimum focus distance, when you are talking an 83-84° angle of view, makes a big difference.

Moving in to minimum focus, the bottom wing of the lens hood was only 1cm away from the subject – under 19cm from bread roll to sensor, but only 6.8cm from bread roll to front element. At f/3.2, a hand-held 1/40th was needed (the closer you get, the less you can rely on SS to handle speeds like 1/15th). Focus peaking again enabled the manual focus point to be precisely judged. Great bokeh too.

With a non-rotating front thread, 72mm is one of the classic Minolta sizes. It is necessary to use slimline filters, as with the 20mm f/2.8. It’s interesting to compare the revived older lens with the newer one. The 20mm has only five mount contacts, being non-D specification where the 24mm has eight and reports much more accurate focus data. The 20mm has no lens button, uses screw drive focus, and has a close limit of 25cm at which it has a 1:7.7 image scale. There is also a considerable difference in the build and feel of the CZ; I have no doubt it contains some plastic, but it feels like a good solid piece of engineering and is stated by Sony to have a metal lens barrel. Not metal-skinned plastic, like NEX lenses.

As for coatings, Minolta’s legacy was a use of multiple layer (super achromatic) coatings to rebalance both the contrast and the colour transmission of the entire AF lens range (except designs made by third parties, like the 100-400mm APO). This advantage over other makes was never capitalised on, and made some Minolta designs seem lower in contrast than competitor’s equivalents. No-one ever complained about the colour though! Zeiss’s path from 1975 onwards was to use multicoatings a different way, maximising contrast and light transmission but permitting each lens design to have its own colour transmission quality and variation in contrast. Contax RTS lenses were always praised for their resistance to flare and their extreme macrocontrast.

Since the advent of digital, both overall contrast and colour transmission have become less critical – no need for packs of filters to balance lenses for repro purposes, no need to test Kodachrome with a clip-test to set this up. Just post process or shoot a WB card to taste. Also, Sony Alpha lenses are made in many places – the old Minolta unit, the new CZ-Sony collaboration, co-developed with Tamron and apparently also with Sigma, built by Shanghai Optical or some other owned and partnership facilities in China, made in Thailand but not apparently any more in Malaysia…

While distortion associated with viewpoint and perspective perception is always a companion to shorter focal lengths, over the field of the Alpha 77 (equal to a 35mm lens view or so, in full-frame terms) shapes and solids look natural. At f/4, and ISO 1250, I’ve chosen to downsize this 77 file to 3600 x 2400 pixels (click the image to open). This still allows you to see how clean the light sources in-shot are, with absence of colour fringes. Depending on conditions 1 pixel CA cancelling may be needed with the 24mm.

So, we have here a lens with a Zeiss design and a T* coating which is entirely unlike any Minolta legacy design and will surprise those used to the way ex-Minolta lenses perform. It is fairly immune to flare, not entirely so when confronted with bright sources just outside the image margin, but without the strings of coloured patches associated with 24mms and light sources in the shot. It focuses silently and at a speed which means you may not notice it.

The lens itself weighs 555g, and at 76mm length and 78mm diameter it’s smaller than the 16-50mm f/2.8 SSM which weighs 22g more. I’m not a big fan of lenses you can not clasp in one hand while also operating the lens release mount of a camera; optics this size and weight are about the safe limit. You can not compared the lens-juggling friendliness of the 28mm f/2, for example, with either the 24mm or 16-50mm and even the 16-80mm zoom is much easier to handle in the field. It’s best to remove or fit the hood before changing the lens, don’t leave it in storage position.

The hood reverses over the lens neatly. The whole item, when in this configuration, is a bit large to handle for safe and secure lens changing.

The finish is lustrous, with rubber rib grips that collect dust and dander readily. The supplied lens hood is surprisingly flexible plastic, with a slight spatter finish to the exterior and a kind of semi-flock paint on the inside. It is efficient, but a poor fit with a not very firm bayonet locking action. It’s easy to get the alignment wrong and it’s not as firm or solid as most other Sony hoods. The rear lens cap is still the frustrating one-orientation only design inherited from Minolta, which leaves even those with a quarter of a century of lenscap-fitting experience fumbling for the correct position.

There is of course a Zeiss front lens cap and you get a free blue badge on the lens itself!

Format, pixel count and cropping

For many years when using film I found wide-angle zooms were not essential, standard zooms were useful, and tele zooms were vital. Generally, with any wide-angle you can zoom with your feet or by doing little more than leaning forward or back a bit. Either that or you simply need the widest lens you can get. Whenever I fit my Sigma 8-16mm or 12-24mm on their respective formats it’s the 8mm or 12mm end which is needed. I only end up zooming in if for some reason I decide to leave the lens on, and move to a different situation without time to switch lenses.

With film, you could crop and enlarge. Small pixel count DSLRs made that difficult or impossible – when you are trying to make 6 megapixels do a full page magazine image, cropping is not an option. Zooming in to fill the frame every time became vital from 2000 to 2008 when the first full frame 24 megapixel models arrived.

I think that 24 megapixels has finally made cropping an alternative to zooming. You may need 9 or maybe 12 megapixels, or if you are shooting entirely for the web you may need no more than 2 megapixels. Fixed focal lengths of exceptional quality, sharp all over the frame in the plane of focus, start to be useful. It has never been a good option to crop wide-angle zoom shots asymmetrically, using just one corner. With a lens like the 24mm you can crop any composition out of the high resolution frame and it will not look so different from an on-axis shot with a narrow angle lens.

Lens resolution really does count, as I have found. For three years I used the Alpha 900 with a range of lenses, including the 24-85mm Minolta RS I keep for convenience. When working with medium format lenses on adaptors, I could see that zooms while ‘sharp enough’ usually came nowhere near realising the potential of the 900. Then, using the 24mm, I saw the same pixel-level sharpness pop out. After a month using the 24mm (kindly loaned by Paul Genge) my ordered Alpha 77 finally arrived. I had already seen how the 24mm got the maximum from 16 megapixel APS-C, and this was followed by discovering its power to do the same at 24 megapixel APS-C.

A standard Sony leather-look lens posing pouch is supplied.

How far can this go? If Sony’s 24 megapixel APS-C sensor formed the basis for a full-framer, it would be a 60 megapixel monster and match all but the most expensive medium format image sizes. I believe the 24mm CZ could go there if Sony chose to.

And that, in the end, is why I changed my mind about owning one. The hour or two of useful daylight and howling gales outside have not allowed me to make much use of it yet – but this is a lens for the long term. And for tomorrow’s Alphas as well as today’s.

– David Kilpatrick

Footnote: added February 2016 – I’m now selling this lens, as I don’t think Sony is likely to produce an A99 model II with functions that will restore what I want to have (notably, GPS – they are most likely to drop this). I’m looking at a move to native FE-mount lenses and probably the 25mm f/2 CZ Batis, even though it’s weaker for close-ups, vignetting and distortion.

Here is a recent example of a full aperture shot on the A7RII with LA-EA3 adaptor –

http://www.pbase.com/davidkilpatrick/image/162677066

Last call for Sony Awards entries

Wednesday 07 December, the World Photography Organisation, issues a last call for entries for the 2012 Sony World Photography Awards, the world’s most comprehensive photography competition.  The deadline for entries is Wednesday 04 January 2012 giving photographers from across the world just four weeks left to enter.

The Sony World Photography Awards is free to enter and open to photographers of every ability, whose work will be judged by an esteemed panel including such international experts as curator & writer Susan Bright (2012 Chair of Judges) and Jon Jones, Director of Photography for the Sunday Times Magazine. The winner of the L’Iris d’Or/ Sony World Photography Awards Photographer of the Year Award will receive $25,000 (USD) and the overall Open Competition winner, $5,000. All category winners will also be presented with Sony’s latest digital imaging products.

All shortlisted and winning images will be exhibited at a major exhibition at London’s Somerset House, to coincide with the award ceremony in April 2012.  Furthermore, all winners will receive the invaluable support of the World Photography Organisation with their work featuring across the WPO website, in international exhibitions and inside the annual Sony World Photography Awards book, offering unparalleled exposure.

The competition has made a significant impact on the careers of many photographers around the world. 2011 L’Iris d’Or/ Sony World Photography Awards Professional Photographer of the Year, Alejandro Chaskielberg from Argentina, said:

‘The Sony World Photography Awards has had an important effect on my career, and since winning the award my work has been published worldwide. I was honoured to receive L’Iris d’Or this year and I would strongly encourage photographers everywhere -whatever their ability – to enter the competition.’

Astrid Merget, Creative Director of the World Photographer Organisation added:

‘Over the years, we have had the pleasure of watching winning photographers at various stages of their careers move forward with incredible success.  This award can truly be a spring board for photographers who claim the recognition and capitalise on all the benefits and support it comes with.’

The 2012 Sony World Photography Awards is more comprehensive than ever before – with an extensive range of awards, appealing to photographers of different levels. In addition to the Professional and Open (amateur) competitions across categories ranging from travel and current affairs, to still life and people, other competitions include the Moving Image and 3D Award, Student Focus competition – for higher education photography students aged 18-28, and new for 2012, the Youth Award.

For a second year running the hugely successful festival, World Photo, London, and Sony World Photography Awards exhibitions will be held at Somerset House in London in April – May 2012. Billed as the global photographic event of the year, World Photo, London, and the Sony World Photography Awards, celebrates the very best in photography from around the world, from the next generation of emerging photographers through to the established masters of the art.

The opening weekend of World Photo, London, will be held at Somerset House from 27 – 30 April with selected events and the Sony World Photography Awards winners exhibitions, continuing through to 20 May 2012.

The annual Sony World Photography Awards ceremony and gala dinner will take place on 26 April at the Hilton Hotel in London’s Park Lane, where 2012 L’Iris d’Or/ Sony World Photography Awards Professional Photographer of the Year and Open Photographer of the Year will be announced.

Full details about the World Photography Organisation and Sony World Photography Awards can be found at: www.worldphoto.org

 

Sony Alpha 77 & 65 Firmware v1.04 download

The download is approximately 65MB of data in a Mac .dmg mountable disk image, or some other stuff for Windows.

The process will take about seven to ten minutes overall including downloading, opening and completing the procedure. You need a battery for the camera with at least three bars showing – preferably fully charged – and your computer to camera USB cable. The actual transfer to the camera takes about four minutes follow by 30 seconds of internal processing.

During the Mac update, you may see this window when the camera is turned off for the upload from computer to camera, and at the end of the process:

Do not worry about this – it refers only to the Mass Storage connection. Do not let this distraction interrupt your process.

SLT-A65 Firmware Upgrade v 1.04

Windows

http://www.sony-asia.com/support/download/478855

Apple Macintosh
http://www.sony-asia.com/support/download/478884

SLT-A77V Firmware Upgrade v1.04

Windows
http://www.sony-asia.com/support/download/478891

Apple Macintosh
http://www.sony-asia.com/support/download/478893

Features:
Adds auto-correction of JPEGs for two lenses:
Vario-Sonnar T * DT 16-80mm F3.5-4.5 ZA (SAL1680Z)
Sony DT 16-105mm F3.5-5.6 (SAL16105)
Improved ‘usability’ – remains to be discovered what that means
Improved image quality (presumed to be JPEG quality and noise levels)
Faster command/menu/setting response (less time lag between control wheel and updated screen info)

Example: correcting the 16-80mm CZ lens wide open at 16mm – focused on an A2 target, a very close distance which exaggerates the distortion level of the lens:

Above: uncorrected image

Above: in-camera correction. For full size versions which allow you to examine the CA (very prominent at f/3.5) and the degree to which it is corrected in the Fine JPEG, click the images. As you can see the image is enlarged by correction, so not quite as much coverage is achieved. But it’s less than you imagine; a fully corrected 16mm shot ends up being similar to a 16.35mm lens on the vertical and horizonal axes, or a 16.55mm lens on the diagonal. That’s still wider than a rectilinear perfect 17mm, so it’s better to use a bendy 16mm than lay out for a Zeiss MF 18mm, if you want coverage. And even Zeiss 18mms show some curvature.

We’ve tested the 16-50mm as well and BOY does that lens distort at 16mm – far worse than the CZ – which makes it clear that the in-camera lens correction goes hand in hand with this lens. To get any kind of straight line image, it’s going to be necessary to use the correction or a profile for raw conversion in a program like Adobe Camera Raw which accepts lens profiles.

The responsiveness of control wheels changing settings is greatly improved – altering +/- EV compensation for example now responds almost in real time as you shift the control. No significant improvement can be detected so far in image quality despite the claims, at least with the 100 or so test shots we’ve taken at different ISOs using a Color Checker, and other spot checks for Low/Normal/High NR. But there are so many modes on the A77 including panoramas, multishot, DRO, that the improvement may well be specific functions which Sony will explain in more detail.

1 8 9 10 11 12 26