Sony’s Alpha 99 – mastery wrapped in dilemma

alpha99side

The launch of and initial reaction to Sony’s Alpha 99 has been spoiled, for many, by the overpricing of the camera generally and to a greater degree in some key markets. The promise of the SLT design, and Sony’s move away from flapping mirrors and optical prisms with their associated collimation and alignment, was one of reduced manufacturing cost and more competitive product.

Along with this, we should remember Sony’s 2006 statement that external mechanical controls, switches and buttons would be reduced on future models for the same reason. The Alpha 99 has as many external physical controls as any predecessor and will make traditional users happy.

a900toa99

Compare the Alpha 900 and the Alpha 99 – despite apparently very different designs, they share many points and clearly come from the same gene pool. There is no longer any need for the largest glass prism of any modern DSLR, the power switch has moved to Nikon position round the shutter release, lines are rounded off. The construction is similar as the strap lugs fitted through the outer skin into the solid magnesium chassis indicate.

a900toa99rear

From the rear, the 900 looks somehow more complex because of the left-hand button array. In fact the A99 has just as many buttons (it is only missing a SteadyShot switch and the selector round the AE lock button for metering method – this is no longer as important with the 99 doing its metering directly from the imaging sensor).

Out there we find Canon’s lightweight travel-friendly full frame 6D appearing at £900 lower launch street price (UK) with both that essential built-in GPS and the marketable function of WiFi, and Nikon’s almost comparable D600 officially at a £500 lower RRP, and a street price match for the Canon. In practice the UK Sony price of the A99 fell from £2499 to £2299 in the first two months on sale; the D600 fell from £1955 to £1495 in the same period (WEX dealer figures) and on that basis we can expect the see the Canon fall to £1395 in early 2013. By then the A99 may have fallen to £2195.

Sony lenses are not cheaper, nor wider in range of choice or sources of supply, than Nikon or Canon. There is no collateral benefit when you hand over as much as 50% extra to Sony for their innovative cost-saving technology. In my British Journal review, I concluded that the Alpha 99 was between 30 and 50% over-priced and combined with the cost and limited range of Sony lenses there would be little good reason for any new full-frame entrant to prefer Sony over Nikon or Canon.

At the same time, the Alpha 77 – so close a sister to the 99 that it shares exactly the same EVF and the same file size, with identifiable advantages in some respects – has been selling for £819 body only in the UK when the 99 in the same store was priced at £2299. That’s 64% less, 36% of the price or just over a third. You could almost buy three A77s for one A99. And it even has that very useful built-in flash.

a77-a99-topaligned

You may pause to work out which of these, photographed to exactly the same scale (one shot) and then moved so that their focal plane markings coincide horizontally, is the 99 and which the 77. The 99 is actually bigger but looks smaller.

a77-a99-sideheight

This will give you a better idea of the height of the A99, and also the improved eyepiece which puts your eye further away from the camera screen or back than the A77.

Assault and battery

In fact, there’s a hidden penalty in addition to the high price of the A99. The Nikon D600 with its single 1900mAh battery as supplied will keep on shooting into four figures where the A99 with GPS enabled manages a couple of hundred on a good day with the wind behind it from 1650mAh. Officially it does over 400 without GPS. That was not my experience, any more than it has been with the Alpha 77.

Perhaps this is because of the odd conditions Sony uses to measure battery life – only using a MemoryStick PRO Duo card not SD, no card in slot 2, ambient temperature 25°C, shooting Fine quality JPEG only, shooting one frame every 30 seconds and turning the camera on and off every ten shots, and not having GPS active. Needless to say I shoot raw, back up to a second card with JPEG, and have GPS active. That’s why I bought the camera…

d600-a99fronttop

The economical Nikon D600 is a direct competitor, despite rabid claims on internet that the 99 is ‘professional’ and the 600 is ‘consumer’. They are both semi-pro models but the 99 probably has a better shutter mechanism and a higher precision body. The Nikon has better image quality and battery life. Both have similar dual card slots, manual adjustment of audio input for video recording, wireless flash options, grip and so on.

d600-a99rear

GPS eats batteries. We’ve got a GPS module for the D600 which runs off the camera’s power, but so far have not had it switched on permanently for a week. Maybe it will reduce the D600 to the same ‘battery every day or two’ as the A99. The Canon 6D is the only other DSLR made with built-in GPS. Unlike the A99, the 6D does not turn off its GPS when you turn the camera off. Result? The 6D drains a battery in four days, flat – dead flat 0% – if you just switch the camera off and leave it in your bag with the GPS symbol showing. You have to go into a menu and turn off Enable. At least the A99 does not draw on its battery at all when switched off, regardless of settings.

d600-eos6d

The EOS 6D compared with the D600 – it’s smaller, lighter, and built to a far more consumer-level standard with minimal controls. But like the 99, the 6D has GPS on board, and as a ‘first’ in this field it includes WiFi, which is not just file transfer. We used a free iPhone app to view, focus, adjust settings and shoot remotely and wirelessly with the 6D (EOS Remote). This is bound to win substantial sales.

You need deep pockets in two senses for two extra Sony batteries (£136) or the add-on vertical grip at £299 plus two batteries (not included). The first option will keep you going without GPS about as long as the Nikon on one charge. If you are travelling and using GPS, be prepared to change and charge one battery daily.

Another reason for this short battery life is the electronic viewfinder. Unlike any optical prism finder, it uses as much power as shooting video. Even if you turn the camera off every time it leaves your eye, the typical length of time needed to compose and follow subjects will add up. I do not have review enabled, and I rarely ‘chimp’ because one big plus side of the Alpha 99 – as you will learn – is the near 100 per cent success rate achieved by its metering and focus. If you use the rear screen for composition instead of the eye-level finder, you can extend battery life by 16%.

Sony must be commended for sticking to the same battery format used by all larger body models from the Alpha 700 onwards. I do have half a dozen spares but of course, many are now getting old and barely manage 150 shots in the 99. What Sony must do is to take the advances made in lith-ion production and create a higher capacity NP-FM500H. Third party makers have been able to boost their clone batteries to 2000mAh (I’ve bought two and they are non-compliant with the chargers and clearly don’t deliver what they claim…). Sony’s battery should match Nikon’s similar size at 1900mAh, even if the EVFs now standard across the Sony range will always eat twice as much power as a regular DSLR.

The EVF dividend

Would-be Alpha system professionals and advanced amateur users face a future of electronic viewfinders. The good news is that at photokina 2012 Epson showed a prototype with twice the resolution of the current 2.3 million pixel ceiling, and in five years most current complainers will accept that an EVF can be as accurate as any true groundglass screen ever was.

We tend to forget that after autofocus arrived focusing screens lost their visible granular or laser-cut structures unless you deliberately specified a type intended for manual focusing. Plain old groundglass has a ‘dot’ all of its own because it does break the image up. Minolta’s Acute Matte screen was like a superfine microprism field. The new Epson developments come so close to being as fine as this kind of screen, visually, that you might be able to fool someone into believing it was not an electronic finder.

While the A99 finder is excellent, it falls a touch short of this. It is absolutely identical to the Alpha 77 in every parameter including virtual window size (the magnification figure given by Sony of 0.71X compared to the A77 1.09X is all down to using a 50mm lens on both for measurement). Eyepoint is identical despite the slightly different overall design of the eyepieces and the size of the rubber surround. If there’s any improvement, it lies in the illumination range and contrast control of the OLED unit which has been given one additional user control, colour temperature. You can make the finder warmer or cooler in colour independent of any picture style or WB adjustment.

This is a good example of where the EVF’s great clarity in low light pays off – an ISO 3200 image taken hand-held where a tripod was not appropriate, using the Sigma 12-24mm which has fairly strong vignetting. To see and align the geometry of the shot (bottom cropped off) was much easier on the A99 than it would have been on an OVF camera. Click the image for a full size file.

In full sun, the finder appears very dim compared to any good optical finder. In overcast light, it’s a good match. As the light fails or you move indoors, the EVF shows substantial benefits over optical systems. After dark, it can make accurate composition easy instead of almost impossible.

Here, the A99 has the edge over the A77, NEX-7 and all predecessors even including the NEX-5n and presumably the 6 which I haven’t tried. The larger sensor’s better high ISO performance together with its pixel count keep the coloured noise at bay for another stop or two lower light levels. This coincides with an important transition. The kind of indoor artificial light level where the A99 remains very clean using an f/2.8 lens is typical domestic light – brighter than restaurants, not as bright as stores and malls.

Anyone using the A77 will confirm that the 16-50mm f/2.8 lens brought a real benefit in this sort of lighting despite its other failings, by improving the finder experience. Combine the A99 with a good fast lens like the 50mm f/1.4 and you get a relatively natural view of the world after dark.

The A99 returns the auto eye start sensor, which switches between rear screen and EVF if you have that function enabled, to below the ocular instead of above it as on the A77. This makes viewfinder attachments work without blackout glitches, including Sony’s 1.15X eyepiece magnifier, which for me enables a full view of the screen and a truly impressive finder size.

Ergonomics and control

One of the benefits of the EVF is that you don’t need to use the rear screen at all. The Quick Navi interface developed more or less from A700/900 Quick Navi has to cope with a bewildering number of pictograms and readouts, ranging from a full histogram to digital spirit level, and a complex AF setup. With the help of carefully repositioned buttons, it succeeds. I’d say that the A99 has the best user interface I’ve seen on an Alpha since the 900. The top LCD display panel is much richer than the basic one of the 900, and does not deserve some of the criticism levelled at it for duplicating stuff you can see on the rear screen. I work with the rear screen permanently turned to face the body, unless I am actually employing it for composition or image review. The top LCD provides vital at a glance info about manual or metered exposure settings, ISO, state of ± override, battery power, drive mode, WB, file type and image remaining count.

It is, however, blank when the camera is asleep. Later in this review I’ll be comparing the A99 with the Nikon D600, which we now also own and use alongside it. Nikon’s top LCD shows some basic info (shots remaining) all the time. But it’s interesting to note that Sony gives you the correct information when Nikon does not! Both cameras have two card slots. You can set both of them to work in overflow mode, fill one card, then the next. Nikon shows you only the shots remaining on the card in use. Sony shows you the total. The Canon 6D LCD also goes blank when the camera is turned off, except for showing a GPS symbol to warn you about leaving this battery-eating function Enabled.

a99-modedial

The Mode dial has three memory positions, a Tele 10fps (1.5X crop) position, panoramic, Scene selection, Intelligent Auto, PASM and a separate Movie position. You can opt to lock the Movie button out except when the dial is set to this.

Another similarity is the mode dial, locking on all three cameras. Here, Sony goes for a more purposeful central locking action making it a little harder to adjust the dial. They also cram more on to the dial, including the invaluable feature of Memory 1 2 3 positions (as on the 900). There’s a special movie mode which not only prevents accidental movie shooting, but when used allows shutter, aperture and ISO to be set. The range for this is exceptional, you can film at 1/8,000th shutter speed if you really want to break rules.

a99-mainbuttons

The right hand buttons include Fn, your access to Quick Navi on the screen or in the EVF. There is a new AF Range button which I simply don’t seem to need – I wish this could be customised to become a SteadyShot On/Off button, something I need to do far more often when working with a tripod.

The A99 has a total of 19 operating buttons, some of which have only a single use such as LCD illumination or Playback. The manual identifies 18 primary default functions plus the Silent Controller, of which more later. One button, Fn or Function, accesses Quick Navi and its 23 adjustable settings many of which have multiple choices. Fn can direct access 18 functions outside Quick Navi.

a99-custombutton

Here is where the Custom function button has been moved to – under your left index finger, where the flash pop-up button used to be. Slightly pointless wording on the bright orange anodised lens mount bezel lets you know this camera is not actually aimed at working professionals.

The Menu button accesses six main menu tabs. Still Shooting has four menus covering a total of 20 parameters. Movie Setting has two menus and eleven adjustments. The Custom menu has a huge depth, with six menus covering 33 functions some of which in themselves cover other buttons – five of the dedicated buttons on the body can be assigned any one of 35 functions or behaviours, including their native marked use. The Playback menu has two tabs, with ten parameters. The Memory Card Tool menu also has two tabs and nine functions, needed because you can choose where and how to save raw and JPEG images and movies.

Only the Clock Setup menu remains its usual two-entry basic form. The main Setup menu has four tabs covering 24 settings or actions. If you want to try adding all this lot up, before even investigating the complexity of settings within some aspects like Picture Style, you’ll realise there are thousands of different exact ways in which an Alpha 99 can be configured.

Canon has always had a secret weapon whenever anyone failed to get the expected good results from their camera – ‘ah, you didn’t set it up correctly…’. Now Sony has the same rather weak excuse. Not setting the camera up at all should result in successful images. No buyer should experience Default Setting shortcomings out the box. Setting it up expertly should lead to wonderful, perfectly tuned, almost-impossible-to-get-easily images.

And, I am glad to say, if you get an Alpha 99 out of the box and never touch a single one of these adjustments it is more than likely you will get perfect images. That is because unlike most DSLRs, the Alpha 99 actually works like your eye. It focuses and exposes as effortlessly as you do and you can see far more clearly, through the EVF, what is happening to exposure and focus as you prepare to shoot.

The EVF looks great in dark conditions – no coloured noise like the A55 and A77 generations, as the sensor is so noise-free. This is an in-camera ISO 1600 JPEG, click to go to the original full size file. It’s not bad at all.

Real-world performance

As I’ve said, we have been using the Alpha 99, Nikon D600 and Canon 6D side by side before I started writing this review. I did not have the 6D present when making colour-checker tests on the A99, A900 and D600.

Shirley has used Minolta/Sony since 1980, when we first took over the Minolta Club. Before that she used Praktica (as many students did), Pentax and then Olympus. The OM system was her preferred camera for its size and weight, and the exceptional viewfinder.

Well, after over 30 years using Minolta then Alpha, she’s finally departed from the system because of the change to EVF. Unlike me, she finds EVF view uncomfortable. The Alpha 700 was a great camera but sensor technology moves on, and she happens to be a regular abuser of long focal lengths and low light. The A580 has proved good but the very small optical finder has been an issue from the start. The Nikon D600 with 28-300mm VR lens may not be her ultimate ideal camera – we’re planning to try the Pentax K5IIs with 18-250mm, as that has a very good large optical prism finder. But Sony is now out of the picture and we suspect that she’s not alone. However good EVF technology becomes, some users will never feel comfortable with it.

One reason is the need for perfect accuracy in adjusting the dioptre. Optical finder cameras have a certain latitude, always best with exact adjustment, but remaining sharp over a small range of error. The A99 EVF does not have any latitude. The dioptre is set in clicks, and one click either way puts the OLED display visibly out of focus. If your eyesight changes a lot or you move between spectacles and the naked eye frequently, you will need to make constant adjustments to the dioptre.

The first thing we noticed when reviewing a few hundred raw files taken in  similar conditions with the two cameras is that Nikon’s auto-ISO implementation on the D600 behaves very differently from that on the A99. The Sony metering, especially in Program mode with Auto ISO and wide potential range set, prefers the lowest ISO acceptable for the focal length in use and the available light. Nikon’s system will select higher ISO settings, and smaller lens apertures, very readily.

The Nikon meter is also calibrated out of the box to be generous in exposure, possible because the separate metering system is more influenced by light sources or high contrast and prone to big shifts in auto exposure with minor adustments to composition. At any given ISO, the D600 was often giving double the actual exposure – half of this doubling due to overexposing a bit, half of it due to Nikon’s different calibration of ISO.

dynamicrange-a99

Not only does the A99 have strikingly accurate auto exposure when confronted with very difficult conditions (Sigma 12-24mm shot above covering from deep shade to a white waterfall in sun), it also has 14-bit raw files with generous shadow detail and highlight recovery headroom. Click image to open a larger (not 100%) view.

dynamicrange-histogram

Here is the histogram and totally neutral adjustment set shown in Adobe Camera Raw before fine tuning the shot above to improve the brightness and clarity of the shaded areas. Note the excellent shape of the histo without top or tail clipping.

The A99 meters exposure off the actual shooting sensor, using a 1200-zone colour sensitive matrix and intelligent bias towards single or multiple active AF points. In practice, it proved almost bullet-proof. Anyone who can remember the consistent off-sensor exposure of the old Konica Minolta A2 will appreciate the new Sony EVF and NEX models alike. They simply meter with far better consistency than any camera which uses a separate metering sensor. Of course this can also be said of Olympus, Panasonic and all mirrorless cameras. But they don’t all have the amazing 14-bit raw files and 12 EV normal ISO step dynamic range of the Alpha 99.

When we processed the raw files, Nikon’s ISO 6400 was less noisy than Sony’s despite the very similar (not identical) Sony manuactured 24 megapixel FF sensors. The difference is a little more than we would expect from the 2/3rds EV light loss caused by the trans-flective SLT mirror. The remaining difference seems to be down to Nikon treating a gain which Sony would call ISO 4000 as one labelled 6400, but giving exactly the same exposure Sony would give at 4000. This is not very accurate, as depending on the actual ISO setting the discrepancy ranged from less than 1/3rd of a stop to around 2/3rds, but seems to increase at higher ISO settings. Thus Sony has an apparently clear disadvantage at 6400 or 12,800, but the camera is actually giving half the exposure.

Here are some small samples which, when clicked on, will lead you to our full size set of JPEGs which can be pretty large. These files compare the A99, A77, A900 and D600 at two ISO settings only – 100 and 6400. All are auto exposed under identical conditions using matrix metering, so the cameras have been allowed to give whatever exposure and apparent ISO they would do in comparison. All have been processed using identical settings with Adobe Camera Raw 7.3 – Camera Standard profile (Sony Alpha 900 profile for A900), Linear, default sharpening 25/1/25/0 and no noise reduction at all.

A99 at 100

A99 at 6400

A900 at 100

A900 at 6400

D600 at 100

D600 at 6400

A77 at 100

A77 at 6400

anglescreen-85mm-100th6p3-640

The Minolta 24-85mm at 85mm and f/6.3, 1/100th at ISO 640. A perfectly clean file, critically sharp though only one third of a stop down from wide open. Click image to view a larger (not 100%) version. The quiet shutter and articulating live view screen enabled this natural study.

Although the Nikon lens used was a consumer grade optic the £800 28-300mm VR, when it managed not to misfocus or produce a strange reverse-VR blurring due to Shirley’s initial failure to delay shooting by a tiny amount to allow the lens to settle, often produced slightly sharper results than the 1999 Minolta 24-85mm I chose to use on the A99. Subsequent tests show that the Nikon sensor seems to have a slight fine detail advantage over the Sony at ISO settings around 200-800 with Adobe Camera Raw 7.3. While Canon’s 20 megapixel 6D sensor has a similar high ISO performance, detail sharpness was generally similar to the A99 rather than the D600. Cumulative issues with AF performance, lens field flatness and sensor planarity also led to some Canon images having zones of unexpected defocusing. The A99 has no such problems and I believe it has the same very high standards of sensor flatness and body precision as the A900.

Comparing the A99 with the A900, there is a clear one stop gain in ISO related performance above 1600. But at 100 to 400, the A900 from raw has a kind of fluid quality – the pixels seem to merge and give a luminous yet crisp image. The A99 never really produces this special quality at low ISO, though at the expanded 50 setting it’s impressive. Perhaps there’s an element of illusion in this, that the exceptional optical image through the A900 finder conditions me to see the final picture differently.

The A99 has the same generous 30-lens AF Micro Adjustment calibration as the A77, though I found no need to calibrate except a very small adjustment of -2 for my 28-75mm f/2.8 SAM. I’ve not yet used every lens I own. It also corrects geometry and CA in-camera unlike the A900, for JPEGs. One benefit over the Nikon D600 which does the same is that the EVF shows the true geometry and composition after the corrections are applied. Optical finders can’t do that. This does impose a small extra load on processing and if you are after the fastest overall response should be turned off.

The A99 has one of the best 1080/50(60)p HD video functions on the market. For the bitrate involved, it captures detail three times as good as you would expect. It tends towards a soft compression like the Canon 5D MkII, not a highly detailed frame level image like Nikon’s video. You can stream pure HD video to external recorders without compression, monitor live sound with headphones including provision for lip-sync or echoless real time latency, control the stereo mic/line input with manual gain, and use the Silent Controller during filming for various functions.

silentcontroller-a99

The Silent Controller is a free rotating dial with a push button in the centre allowing you to set its function before each use if you want. The default use is AF-C, AF-S, AF-A, MF, AF-D and there are no clicks. It is silent, for use during movie shooting to change exposure or audio volume (etc).

This controller is placed where the former C/A/S/M focus mode switch was on the 900. It has a central button you can press to reassign a function to it before use. The external knurled collar is turned with one finger, without click stops. By default it changes focus mode. A typical assignment for this during video would be audio volume.

The 99 can auto-crop to APS-C 10 megapixel files when DT lenses are fitted, or if this is set by menu (needed for non-Sony lenses like Sigma DC or Tamron DiII). It can do this for raw files, resulting in a smaller raw, for raw+JPEG, JPEG only and for video. The Smart Teleconverter works in JPEG-only or video modes, giving 1.4X or 2X (4.6 megapixel) stills. In conjunction with the rear controller you get a further continuous zoom range to 4X for movies (native resolution to 3X, interpolated between 3X and 4X, with a very smooth electronic zoom effect). The EVF remains pixel-sharp at 1.4 or 1.5X, but anything more and you can see that the sensor image is being enlarged and is softer.

The 1.5X crop is also enabled if you select the 8fps or 10fps higher speed continuous mode, using the mode dial, rather than the 6fps full resolution mode using Drive settings. The actual sequence burst rates are effectively identical to the A77 and not any better in practical terms than the 4-year-old A900, which unlike the 99 can shoot 5fps Fine JPEGs without a break until the card is full or the sensor overheats. The 99 can only manage 18 frames before slowing. The use of a single Bionz processor with SD storage in the A77 and 99 seems to have been a backwards step, the dual processor of the A900 was better able to sustain a data flow to the fast UDMA CF cards accepted by that camera.

a99-carddoor

The dual card slots – SD and MS Pro Duo upper, SD only lower. The lip surrounding the card slot area is an effective waterproofing channel and the metal spring plate gives the card door a firm, unstressed action.

The 99 does away with CF despite its 900-like body size. Instead, a dual SD drive very similar to that in the Nikon D600 is fitted. Even the spacing of the two slots, and the way the upper card sticks out a little more than the lower, is the same. But the Sony has the ability to accept Memory Stick PRO Duo cards in Slot 1 as well as SD. I find this convenient, as I use a classic Dynax camera strap with a card wallet fixed to it. This can hold spare MS Pro Duo cards, and by chance, the slots for these cards also fit the plastic cover for the new hot shoe exactly – there’s nowhere else to put it, and it matters. The latest MS Pro Duo HX cards offer maximum performance, better than SD UHS-1.

But in the end, despite all its problems, the Alpha 99 simply turns in a better success rate on my sort of subjects – landscapes, street scenes, people, events – than its rivals. The metering is more accurate, the AF is either as good or better, the image quality at high ISOs is a touch lower, the GPS works well, and of course the sensor-based stabilisation is a total winner. Sigma sent a 35mm f/1.4 in Canon fit to test. This lens is quite incredible, and transforms the Sigma offering. It’s so sharp even wide open that the smallest degree of camera shake makes a shot look inferior. I forgot that with the A99, there’s hardly any situation I can not tackle hand held and get pixel-sharp results. I used speeds like the 1/30th or 1/60th on the Canon 6D and lost the exquisite jewel-like edge sharpness of the Sigma. I’m just so used to getting every single shot usable and not thinking about whether a lens is stabilised or not.

This scene didn’t work well with the un-stabilised Canon 6D – I was too cold, and hanging on to a support with one hand while standing half way up a steep muddy slope, with two cameras. SteadyShot worked well on the A99. Click the image for a full size link. ISO 1600.

The new shoe

The new Sony Multi Function Accessory Shoe looks a bit like a rather crude old single contact hot shoe, and its central contact does indeed work to sync with any plain ISO unit. It can be used with Skyport and PocketWizard or generic flash wireless triggers, and I’ve also checked it with Wein infra-red. The three holes round the main contact are locking-pin holes, so beware third party generic adaptor makers. This is a good candidate for getting adaptors stuck.

alpha99-shoe

Under the leading edge of the ‘old’ shoe there is a recess, a horizontal slot not unlike the accessory slot fitted to the first generation NEX cameras. Its gold plated contact strips are very fine, and if this slot was left exposed by failing to replace the cover, it’s easy to see that dirt of moisture could get in. Unlike the NEX slot, there is no built-in spring loaded cover to shield it.

This interface provides the flash connection – duplicating the entire contact set for the iISO or Minolta i-shoe known as the Auto Lock Accessory Shoe by Sony, which is now gone. A small adaptor ADP-MAA is provided with the camera to convert from the new ‘old’ shoe to the Minolta standard. It is as slim and firmly fitting as they can make it, but still felt a little vulnerable with an HVL-F58AM mounted on top, especially when the camera was held vertically. A new flash unit, the HVL-F60AM, has been released for the A99 and in line with current trends it incorporates an LED video/modeling light. This aims forward to double as an AF illuminator, and can not be bounced.

flashadaptor-base

The adaptor ADP-MAA shown with its connectors and the small spring loaded pins and ‘ball bearing’ centre contact to fit the new Multi Function Accessory Shoe.

Audio input is also handled by the shoe for microphone units compatible with the Cyber-Shot/HandyCam/NEX models using the new shoe. Since this shoe also appears on the NEX-6 and the DSC RX1 where it is the only way to input audio, there is some hope for a line/mic module. It is not needed by the A99 as this has a 3.5mm phantom powered stereo jack input, under one cover with a similar headphone output. Both input and output volume levels can be controlled on screen.

alpha99interfaces

This change means that there are now three generations of hot shoe in the Alpha system, and five different shoe or accessory mounts in the Sony still camera systems of the last few years – there’s the Sony CyberShot shoe in two generations used by DSC F series and the R1, the inherited Minolta Auto Lock shoe, the NEX Smart Accessory Terminal and this new Multi Interface Shoe. To say this is unwelcome would be an understatement, but the shoe provides a long-term solution for future development and if you want to create a Christmas tree, it’s still backwardly compatible.

Its 24 contacts cover two different levels of power supply to accessories, audio in and out, flash or wireless flash control and connection, add-on GPS unit (the 99V includes an internal GPS, the plain 99 does not), add-on WiFi module, and EVF or HD monitor feed. We should expect to see a WiFi module and a monitor screen option, while the regular HDMI output can simultaneously send uncompressed video to a recorder. What we don’t know yet is whether the future WiFi module will be as clever as Canon’s built-in WiFi and do more than just send files from the camera. If it has an Android/iOS app for remote viewing and shooting it will be a winner.

The flash system remains with the original Minolta digital wireless TTL protocol as found from the HS(D) guns onwards. There is no built-in flash on the A99 and thus no built-in wireless control. The HVL-F20AM fold-down mini flash made for the A900 as a wireless trigger works perfectly on the 99 with the ADP-MAA but it’s no way as neat. The one benefit is that for direct use, it’s raised a little higher and casts less lens hood shadow while causing less risk of red-eye. We would guess that a new version will appear soon enough. I’ve tested it both directly and bounced, and as a wireless controller.

Flash exposure with the A99 has been exactly as expected – not a wildcard – but short of testing every flash in every configuration, I can’t guarantee against the kind of overexposure found in the A77. All I can say is that my tests, made within the expected range of units using appropriate ISO settings and apertures, have worked well. I do not use flash often outside the studio, and given the performance of the A99 at high ISO settings I doubt I will ever want to.

Any reverse adaptor for the shoe – to allow the HVL-F60AM to be used on Auto Lock shoe cameras – will not of course provide functions other than flash. The Auto Lock shoe doesn’t have any of the other contacts.

My reservations about the Multi Interface Shoe are only that its connector strip looks delicate and each contact has a very small physical contact area. Even the Auto Lock shoe has had its problems with occasional contact failure due to wear and tear or foreign matter.

a99-connectors

There is, of course, also a studio flash PC sync cord connector, threaded, under the same cover as the DC Power Supply connector. Below these is the Remote Cord connector, and between them, a GPS symbol marked next to the loudspeaker. Sony does not give advice which way up to hold the the camera for the best GPS reception. With the Canon 6D, lying on its back face up is the recommended position.

The focus system

Because of the Smart Teleconverter, APS-C auto crop and video crop/zoom functions the A99 needs an AF module perfectly suited to the APS-C or smaller areas. It gets exactly that – the same module as the A77 uses, and that one starts off with leeway to work in Smart Teleconverter mode.

It’s a rather staggeringly tiny 6 x 12mm AF array, one-ninth of the frame area. Imagine the frame divided into thirds both ways and the entire 19-point, 11-cross point phase detect array fits within that modest central rectangle, but forms more of a horizontal ellipse shape within it. No AF points reach into the corners of that central patch.

The manual is deceptive because it frequently shows the AF area and points out of true scale to the overall frame.

a77-AFarea-ona700

This is why you come to photoclubalpha – we do the stuff the others don’t notice! Above, though rather crudely taken due to needing to hold an A55 with 30mm macro up to the eyepiece of an A700 aimed at the rear screen of the A77, is the actual AF module of the 77 (faint squares) overlaid on the AF markings of the A700 finder. This may be out by enough to make the overall AF zones similar , but it looks to me as if the A77 doesn’t quite cover the same extent as the A700, even after allowing for the 96% A700 finder view.

a99-AFarea-ona700

This is the same technique applied to showing the AF zone of the A99. As you can see, it’s the same module as the A77, floating in the middle of full frame. It doesn’t come anywhere near to the extent of the old A700 module, or the A77 in its cropped format frame. It does not even reach the ‘rule of thirds’ favoured points for composition. Coindidentally, the Phase Detect AF-D zone with its 102 tiny sensor spots occupies almost exactly the same area as the square formed by the A700’s top and  bottom horizontal line sensors and triple vertical groups.

sonyafrepresentation

Here is how Sony generally represents the AF zone within manuals. This is not a graphic dealing with AF, and there is no need to show the AF zone larger than it actually is relative to the rest of the display. From the A99 manual.

Sony may have saved some money by using exactly the same module as the A77 but it’s just not adequate. You can compose shots where not a single part of the subject you want to have in focus touches an AF point, and moving subjects can move beyond the active zone all too easily. What was needed was twice the AF area – 1.4X the linear dimensions at least – even if that meant adding further non-cross points.

This module works with all Alpha lenses, from the earliest Minolta screw drive to the latest SSM and SAM. It works down the EV-1 (minus one), the same as Nikon’s 39-point D600 module and four times less sensitive than Pentax’s latest SAFOX design or Canon’s equally tiny central AF cluster in the 6D. It’s still better than AF used to be considering its ability to work optimally with relatively small apertures.

The marked AF-D area is a larger 12 x 12mm square, and when one of the compatible lenses is used and the appropriate AF-D mode invoked with subject tracking, a square array of 102 on-sensor PDAF focus assist points becomes active. I’ve described the result as a fireworks display, though that depends on the lens and subject. Groups of these points can light up, alongside the main focus points, in brief recognition of the subject.

As to whether it works, I can’t say. It turns on and become visible. Does it make any difference? I use both incompatible and compatible lenses. I can’t say that I have been able to spot any real difference in performance, certainly nothing I can observe or measure. All I see is the points light up after the focus has been acquired; they seem often enough just to confirm what area surrounding the chosen focus point is also within depth of field at focusing aperture.

300mm-500f9-iso800-APSC

To get this shot, the surfer had to be kept within the AF area of the A99. I was using a Sigma 70-300mm f/4-5.6 Apo Macro DG lens (which has replaced my Sony 70-300mm f/4.5-5.6 SSM G – reasons of superior sharpness, light weight, size and close focusing prevailed over the superior colour rendering and bokeh of the big G lens). Click picture for a larger, but not 100%, size.

surferfullframe300mm500thf9iso800

Here’s the full frame, 300mm, 1/500th at f/9, ISO 800. You can see I was keeping the central AF point on target because in this case, there was going to be plenty of spare megapixel estate to crop away. I took 115 shots of surfers, mostly single frames but some short maximum speed bursts between 2 and 5 frames, in nine minutes. Not one is out of focus even when the surfers came in closer to the camera at speed. But… they are all within that small one-ninth area of the frame which features the AF grid.

This 102-point zone is also too small, and the wrong shape. It’s a cut-cornered square. I am shooting 2:3 or 16:9 ratio stills or movies. I am not shooting square images. There is a reason, and it is also the reason more lenses do not work with this on-sensor phase detect focus assist. The pixel pairs on the sensor with their differentially angled microlenses use the image forming ray cone in a specific way to detect front or back focused phase shift. To do so, they demand a specific exit pupil geometry and need to be placed relatively close to the lens axis. This on-sensor array can not be extended to cover the entire sensor, or even to extend to a echo the image format more accurately.

In theory, on-sensor PDAF should be extremely accurate, and should be able to work with contrast detection (as it does on other sensors using this technology). But on the A99, they don’t have that function. You can not opt for hybrid contrast detection with on-sensor PDAF; the system is designed to augment the SLT-fed main PDAF module only.

I’ve already observed that the perceived maximum resolution (microcontrast and detail sharpness) of the A99 does seem to be lower than the D600, despite Sony’s zonally graded low-pass filter which I can confirm does improve the performance to the edges and corners for wider angle lenses. The on-sensor PDAF zone is sufficiently populated and large to have some effect.

In case you think I’m talking up Nikon’s AF module over Sony, don’t… the D600 certainly did not focus any more accurately, quickly or reliably than the A99. Both AF modules are small in coverage, and both cameras do have an APS-C crop function including raw file saving and faster burst capture. The thinking has been alike. Ditto for the Canon 6D. That’s got a pitiful APS-C area module with only 11 AF points, ten of them plain old linear f/5.6 the centre one a mere f/5.6 cross with vertical linear f/2.8 (slightly inferior to the Alpha 700 of 2007 in all respects except low-light sensitivity). Canon doesn’t even have the excuse of APS-C or 2X capture modes, you can’t fit any Canon APS-C (EF-S) lens to the body let alone get the optional crop functions enjoyed by the D600 and A99.

So, here’s a new bunch of full-frame choices, and all three turn out to have small-area AF modules. It is Hobson’s Choice.

The A99 can never be rescued from its tiny principal AF zone by firmware updates and owners will just have to live with it. Things could have been designed differently; they were not. The same module is just about right in the A77. It’s lost in the big image of the A99.

Shutter response

One of the more surprising things about comparing the humble Nikon D600/Canon 6D with the advanced Sony A99 is the sound and feel of the shutter action. Both rivals have a low 1/4,000th maximum speed shutter, but are still capable of flash sync similar to the A99 (1/200th for Canon, 1/250th for Nikon, 1/250th for A99) which means curtain travel speed is similar and they simply chose not to permit a narrow enough slot to achieve 1/8,000th.

The D600 with its complete mirror up and down, twin shutter blind and recock action feels and sounds sweeter than the A99 which has no mirror to move and no first shutter blind. In fact, it’s louder and the dB peak for a very brief spike is about twice the volume of the A99 or the A77. But some recording with sound analysis reveals that the A99 sounds ‘louder’ because the actual duration of the sound is almost twice as long, and divided into two distinct clunks.

d600-a77-a99-200th

The D600, like the A77, has a normal single-shot shutter sound of around one sixth of a second, as you would expect from cameras which can achieve 6fps or something close. The Alpha 99 has double that. I timed it at over 300ms, and if first curtain mechanical mode was used, well over 400ms.

It took me a few days and some digging to find out that the 14-bit readout on the A99 only applies one shooting mode – single shot. Any other mode you select, including Lo 2.5fps continuous and all multishot or JPEG only modes, uses 12-bit readout from the sensor. This was already documented in the literature about the A99, but what Sony omit to say is that the 14-bit mode causes a noticeable pause between the shot being captured and the restoration of EVF viewing. This pause is around 1/10th of a second longer in single shot mode than the blackout which happens during 2.5fps or the first frame of any faster sequence, and totals 200ms or 1/5th of a second.

single-versus-lo

single versus lo

Above is an .mp3 link of single frame 14-bit capture compared to 12-bit capture in a Lo sequence setting. The green rectangle on the graphic indicates the extra time used for 14-bit processing; the overall time of the longest sound is over 400 milliseconds – nearly half a second is a fairly long duration for the audible cycle of any modern camera’s shutter actuation.

Thanks to the detailed analysis of audio recording using Amadeus Pro, followed by frame by frame time analysis of an iMac movie clip showing the actual LCD screen blackout period, I have been able to see this ‘dead period’ of blackout and image processing is longer than the entire shutter action of the A77 or D600; indeed, the shutter actions of the A99 surround this hiatus. The card writing light comes on a millisecond or two after the live view blacks out. The action of the shutter curtain being recocked, which accounts for a substantial part of the overall shutter noise, only happens at the end of the 1/5th second pause.

Short of a firmware upgrade, there’s nothing you can do about the extremely slow single-shot shutter cycle or the interrupted finder view if you want the extra quality which comes from 14-bit raw capture. Nikon offer you a choice of 12 or 14 bit, compressed or uncompressed raws. Sony does not offer a choice and makes the bit depth specific to the way you shoot. There is no doubt at all that both raws in single-shot mode, and Extra Fine Quality JPEGs created in this mode, show less noise when adjusted to an extreme. 12-bit capture is fine for lower ISOs, in good light, with correct exposure.

a99-14bitprocessing

The 14-bit raw file has great flexibility for shadow and highlight adjustment from raw without losing colour values or subtle tones. I’d rate it as one of the best raw file formats I have worked with, at normal (100-800) ISO settings. No local dodging has been used above to enhance the backlit scene – just what amount to curve adjustments.

The 3fps Lo motordrive setting was easy to use for single frames, with a light touch. This caused half the finder blackout duration and no more than a 290ms total sound envelope (including all reverberation – the main sound is not unlike the 180ms of the D600 or A77). It didn’t matter what file size and type I recorded or what card was used. This setting always produced the shutter cycle, and sound, I would have expected the A99 to have.

Having observed the way the camera works, I’m afraid I am now rather too aware of it. It makes me appreciate the Alpha 77’s much faster, sweeter action and even consider the A900’s noisy clack with affection. One effect of the longer shutter cycle is to make the relatively quiet sound – 4dB quieter at peak than the Nikon D600 which also has a higher and more intrusive pitch – seem ‘louder’ than it actually is.

What is interesting to me is just how few users, when I asked for information or tests of their own cameras, were really able to hear the differences or see the blackout period. I can thank Gary Friedman for being able to confirm my findings – he could understand exactly what I was looking for. And thanks to several posters on Dyxum forums, whose concerns were with the image quality of 14-bit versus 12-bit, for providing the information I need to put the facts together and realise that no amount of adjusting settings was ever going to make the A99 share the brief blackout and sweet shutter sound of the 12-bit A77.

Gary uses wireless flash a lot. I don’t generally use flash at all except in the studio. Gary has observed delay in wireless flash triggering which is just as long as the entire shutter cycle, and made a great short video which explains this problem:

http://youtu.be/eHrBcT51oE8

I’m not sure if this is a definitive test – there are other trigger flashes which can be used and I’d like to see the times from the HVL-F60AM, F58AM, F42AM and so on. But it indicates that it’s not just me who does not use wireless flash. Nor do Sony’s systems designers and technical team!

The LV dilemma

Sony’s camera line is now totally committed to using the sensor as the viewfinder. This means that whatever performance they can pull from that sensor, it will always be a quantum drop lower than the same sensor used in an optical viewfinder camera. The level of read noise is heavily influenced by the sensor temperature, and continuous live view makes the sensor heat up.

Sorry, I can’t measure it. No doubt someone equipped with the right tools could measure the temperature of the silicon after 15 seconds, a minute, ten minutes or any other period and also allow for ambient conditions. Sony’s handbook reveals that most performance figures and presumably most pre-production tests assume an ambient temperature of 25°C. By my standards, that’s extremely warm, even as an indoor temperature.

There are warnings that the camera may shut down if video or continuous shooting result in an internal overheat. I’m just not going to be testing the A99 to that degree. The best I could do was to set it to ISO 6400 and the highest video bitrate, and leave the camera running in low light, to ensure the highest gain levels.

I’m fairly sure all of the Nikon D600 noise level advantage can be put down to not using full-time live view, and the effect of the SLT mirror. The Sony sensor is almost certainly just as good overall, give or take whatever effect the phase detection pixels may have.

a99-base

Battery – left hand as seen (right hand grip). To the other end, a narrow covered port allows connection of a vertical grip without cannibalising the battery already fitted. The resulting three-battery configuration is the only way to get real stamina for a busy day’s uninterrupted shoot, especially if you use GPS.

LV and EVF lead to very short battery life, and this may be exaggerated if you want to do very long exposures.

So there is the ultimate dilemma – the Alpha 99 is a master of all the functions and features you could want just so long as you want EVF with it. If you don’t, then the Nikon and Canon alternatives will not only be better choices for you, they will save you into the higher hundreds of pounds or into four figures in dollars.

My choice

The Alpha 99 is currently the full-frame camera I’m working with and will stick with until the next generation arrives.

I sold my Alpha 900 shortly after the Alpha 99 arrived. I regretted it straight away, but that is just down to an attachment after four years of familiarity, and a false reassurance that this is such a solid and simple camera it would have lasted me for life. I do not make videos often, but when I do in future I want full control over direct audio input as audio overdubbing from a separate recorder is something I have found very tricky to handle (at least in iMovie, which is what I use).

I didn’t sell my Alpha 77 despite the poor performance in low light, and the lack of the audio level control. It’s far too useful, having 24 megapixels in an APS-C crop, rather than the 11 produced by the A99 crop format. Also, the general colour and grading of video matches the A99 well enough for the 77 to be a second camera. After we bought the Nikon D600, I found the colour and contrast sufficiently different to mean mixing video from Alpha and Nikon was not an option. It also has manual audio input gain – but we can’t team them up. For much the same reasons I have kept my NEX-5n and my Alpha 55.

Could I work professionally with the Alpha 99? Yes. I’m confident it would not let me down in any situation I’m likely to encounter or set up – I do not shoot sports or hard news, events or conferences. Future professional use would be likely to be public relations, corporate brochure, annual report, advertising, industrial and environmental, executive portraiture, products, architectural, building works, stock travel and landscape. Frankly, anything I could once have shot on a Hasselblad can easily be tackled with an Alpha 99.

Despite this, I would be very happy if Sony revived the highest end optical prism DSLR in future. An Alpha 900 quality version of the D600 would have been perfect. And I do not think I am alone in showing some regret for the apparent end of the single-lens reflex Alpha.

– David Kilpatrick

Footnote: elsewhere, the usual comment has been made that I’m wrong to compare this with the 6D and D600 because the A99 is competing with the 5D MkIII and D800. We have a D800E and may acquire a second one. It’s not competing with that; the D800, and especially the 800E, appeal to a different market where using 36 megapixels counts more than several other factors. It is also not competing with the 5D MkIII, which is locked into a huge Canon professional userbase as the one undisputed mainstream body. Nikon has a fragmented position; the D600 isn’t on the right level, the D800 offers benefits many users do not need and loses advantages they want to keep, the D700 is low resolution, the D3s the same and the D3X is priced beyond its specification. Nikon professionals I know all say what they want is a D700 body (and shutter, etc) with a D600 sensor – they would then have a camera at precisely the same level as the 5D MkIII. They would have the one easy no-doubts choice to make the same way Canon users have.

Like it or not, the Alpha 99 is actually competing with the 6D and D600, and it does not matter to the market that some aspects of its construction and specification are closer to 5D MkIII ‘build’. Sony is doing something in enthusiast-level photography right now that it has done well in the past in television and audio, positioning its pricing as a premium consumer brand. The DSC-RX1 specification and pricing tells you everything you need to know about how Sony sees the market.

a99processor

 

This is why the A99 doesn’t even really compete with the older A900. Single Bionz processor (that word saying ‘Dual’ refers to the memory card slot) where the 900 had two – and 14-bit data to process. The SD cards, even Class 10 UHS-1, also represent a bottleneck in data transfer. Using the highest end MemoryStick PRO Duo overcomes this. Photographed on the Sony stand at photokina.

Sony Alpha 99 full press release

Sony introduces full-frame α99
 
A-mount flagship 35mm full-frame camera debuts Dual AF System and pro-style video features
  • Flagship camera with Translucent Mirror Technology and newly developed 24.3 effective megapixel full-frame Exmor CMOS sensor
  • World’s first full-frame camera1 with Dual AF System with 19 sensors (including 11 cross sensors) + 102 AF point system (focal plane) and a new AF range control function to set the distance range recognised by the AF system
  • Very wide sensitivity range ISO 50-25600 (at expanded sensitivity setting) with extremely low noise
  • Advanced Full HD 50p progressive movie shooting with non-stop Continuous AF and pro-style audio features
  • XGA OLED Tru-Finder with 100% frame coverage
  • Enthusiast-class handling with tough, light magnesium alloy body, weather seals and revised Quick Navi Pro interface

Ruggedly built to cope effortlessly with tough assignments, the α99 sets new standards of imaging performance, creative options, user-focused ergonomics and reliability to satisfy demanding enthusiasts.

Unsurpassed imaging performance and responses

Unique to the α99, a newly developed full-frame Exmor CMOS sensor with 24.3 effective megapixels is teamed with a highly advanced BIONZ image processing engine. This powerful sensor/processor combination guarantees unprecedented levels of imaging performance with still and video shooting.

Now advanced photographers can explore the creative possibilities of full-frame imaging plus the responsiveness of Translucent Mirror Technology.

The eagerly awaited successor to the flagship α900 DSLR, the new α99 is the first Translucent Mirror camera from Sony to feature a full-frame 35mm image sensor.

The full-frame sensor’s resolving power is enhanced by a newly developed separate multi-segment optical low-pass filter. Assisted by an all-new front-end LSI, the BIONZ engine processes massive amounts of image signal data from the Exmor CMOS Sensor at very high speeds. Together with a powerful new area-specific noise reduction (NR) algorithm, this achieves a 14-bit RAW output, rich gradation and low noise.

The evolved BIONZ processor boosts maximum sensitivity range (in expanded sensitivity mode) as wide as ISO 50-25600 – a range of 9 stops. Its unprecedented processing power also enables the α99 to shoot a burst of full-resolution images at up to 6 frames per second or 10 fps in Tele-zoom high speed shooting mode.

For the first time ever, the 19-point AF system with 11 cross sensors is complemented by a multi-point focal plane phase-detection AF sensor. With no less than 102 AF points, this additional AF sensor overlays the main image sensor. Harnessing the power of Translucent Mirror Technology, this unique Dual AF System permits ultra-fast, accurate autofocusing that maintains tracking focus even if the subject leaves the 19-point AF frame.

The α99 also debuts an advanced new AF-D continuous autofocus mode that’s supremely effective with moving subjects. The 19-point AF system provides reliable depth focusing information. It’s complemented by the 102-point multi-point focal plane phase-detection AF sensor that copes effortlessly with subjects traversing the focal plane.

From launch, new AF-D mode is supported by the SAL2470Z, SAL2875, SAL50F14, SAL300F28G2, SAL70400G and SAL500F4G lenses. More lenses will be supported via future firmware updates.

As a further focusing refinement, a new AF range control function allows users to set the distance range recognised by the AF system. This smart feature significantly aids operability if you’re focusing on distant sports action through a nearby wire mesh fence.

Crafted for videographers and movie-makers

The α99 inherits the world-leading ‘cinematic DNA’ from professional movie cameras and high-end camcorders by Sony. The unmatched resolving power and sensitivity of the full-frame sensor is complemented by advanced features optimised for professional video production.

The α99 supports the needs of professional movie-makers, offering full-frame Full HD 50p/25p (switchable to 60p/24p) progressive video recording to meet AVCHD Version 2.0 specifications. As introduced on the α77, Full-time Continuous AF Movie allows smooth, non-stop tracking of moving subjects. Other movie-oriented enhancements include real-time Full HD video output via HDMI, and uninterrupted ‘dual-card’ recording using both of the camera’s media slots.

For extra convenience during movie shooting, a silent new multi-controller is easily accessible via a dial on the front of the camera body. This allows smooth, silent adjustment of exposure compensation, ISO sensitivity and metering method, shutter speed, aperture and audio record levels during Full HD video capture. Shooting stamina is tripled by partnering the camera with the new VG-C99AM Vertical Grip that houses up to three batteries in total (see below). It’s even possible to exchange batteries ‘on the fly’ without interrupting movie recording.

Audio features have also been significantly enhanced to meet the exacting needs of serious videographers. An audio level display and adjustable audio record levels are joined by a headphone jack for accurate in-the-field monitoring. The optional XLR-K1M adaptor kit adds a high-quality mono shotgun mic and pro-standard XLR connections for dependable audio acquisition.

Uncompromised handing for serious photographers

The XGA OLED Tru-Finder gives a detail-packed view of your subject, offering 100% frame coverage with exceptional brightness, contrast, clarity and resolution.

You’ll enjoy a full 100% view on the Tru-Finder screen, even if you’re shooting with a DT lens that’s optimised for cameras with an APS-C sensor. Angle of view is converted automatically for image recording and display. This viewfinder is completely compatible with the APS-C format and displays scenes using the entire finder screen.

Complementing the Tru-Finder, there’s also a three-way tiltable 1229k-dot (VGA equivalent) XtraFine LCD with WhiteMagic™ technology to boost screen brightness in outdoor conditions.

Despite its uncompromising pro-class credentials, the α99 is the world’s lightest1 35mm full-frame interchangeable-lens digital camera. A weight of just 733g (without lens and battery) is made possible by Translucent Mirror Technology, while high-rigidity magnesium alloy panels contribute to an extremely tough yet light design.

Weather-resistant seals protect against dust and moisture, while controls and buttons are ruggedized for years of unflinching operation on virtually any assignment. The camera’s stamina and reliability is underlined by a redesigned shutter block that’s tested to approximately 200,000 release cycles.

Ergonomics have been refined for a smooth, seamless workflow that doesn’t interrupt your creative focus. Enhancements include a re-designed grip, while switches and button shapes are differentiated for intuitive fingertip operation without taking an eye off your composition. There’s also a new exposure mode dial lock that prevents accidental rotation.

Further evolved from the acclaimed α700 and α900, the newly-developed Quick Navi Pro interface gives quick, intuitive one-handed access to shooting parameters.

The camera can also be operated via remote PC connection. Supported functions include switching between still/movie shooting, plus automatic transfer of still images from camera to PC for enhanced studio workflow. *Editor’s note: betcha there’s no Mac app given Sony’s historic attitude to Apple!

Designed for professionals: new lens and accessories

The full-frame imaging capabilities of the α99 make an ideal complement for the new 300mm F2.8 G SSM II (SAL300F28G2) lens. Designed for demanding sports and wildlife applications, this bright super-telephoto offers a significantly uprated optical design and improved handling compared with its predecessor. The Sony-developed Nano AR Coating on optical surfaces assures flawless still images and HD video with reduced flare and ghosting, offering enhanced contrast with crisp black, while a new LSI drive circuit offers faster, more accurate autofocus with enhanced tracking AF. The dust- and moisture-resistant design makes the lens ideal for the toughest outdoor shooting assignments.

In addition, a new wide-aperture Carl Zeiss A-mount prime lens is now under development. Optimised for superb results with the camera’s 35mm full frame image sensor, the Planar T* 50mm F1.4 ZA SSM will be available in Spring 2013.

Offered exclusively as an option for the α99, the brand-new VG-C99AM vertical grip can house and manage three batteries in total (including the camera’s own on-board battery). Resistant to dust and moisture, the grip is ideal for lengthy shooting sessions in the studio or outdoors.

The range-leading HVL-F60M is a powerful flash (GN60, in metres at ISO 100) with built-in LED light that’s ideal for creative applications with stills or movie shooting. Smart functions include wireless multi-flash ratio control and Sony’s unique Quick Shift Bounce adjustment, while operation can be controlled quickly via the flash’s intuitive Quick Navi system. Resistant to dust and moisture, the HVL-F60M comes supplied with a bounce adaptor for flash, and a colour conversion filter for use with LED lighting. Ideal for the α99 and other cameras featuring the new Multi Interface Shoe, the HVL-F60M can also be used with Auto-lock Accessory Shoe cameras via the supplied ADP-AMA Shoe Adaptor.

Compatible with 49mm and 55mm diameter lenses, the HVL-RL1 Ring Light offers highly effective LED illumination of small subjects that’s ideal for macro shooting. Its high output level (approx. 700 lx/0.3m) is approximately four times brighter than the previous model. Brightness can be adjusted steplessly for precise control of creative lighting effects. Operation can also be switched between full-ring illumination for shadowless lighting and half-ring illumination to create shadow effects. The optional FA-MA1AM Macro Light Adaptor is required when using the Ring Light with SAL30M28 or SAL50F18 lenses. Compatible with the Multi Interface Shoe of the α99, the HVL-RL1 can also be used with cameras that have an Auto-lock Accessory Shoe via the supplied ADP-AMA Shoe Adaptor.

The new XLR-K1M XLR Adaptor Kit meets the demanding audio needs of professional movie production. It provides two pro-standard XLR terminals for connecting the α99 with professional microphones and mixing consoles. Operating flexibility is maximised by MIC/LINE input selection and separate adjustment of two channel levels. The adaptor kit comes supplied with the ECM-XM1 monaural shotgun microphone, but may also be used with a wide range of professional microphones. An optional bracket is required when using the XLR-K1M with the α99.

The RMT-DSLR2 Remote Commander allows wireless shutter release for still images and start/stop control of video shooting. As well as the α99, it’s also compatible with other α A-mount and E-mount cameras that include a remote control receiver. (Our highlighting in red – this may NOT mean that it can operate video on other cameras, just that it will operate their existing remote functions – dependent perhaps on firmware updates)

Styled to reduce carrying fatigue, the LCS-BP3 Backpack is designed to meet the stringent demands of professional photographers. Its generous capacity can hold the α99 camera body plus Vertical Grip and attached telephoto zoom lens, together with 3-4 spare lenses, accessories and a 15.5” laptop.

The ADP-MAA is a new shoe adaptor that allows Multi Interface Shoe2 cameras to be used with Auto-lock Accessory Shoe accessories. Conversely, the ADP-AMA she adaptor allows Auto-lock Accessory Shoe cameras to be used with Multi Interface Shoe accessories.

The PCK-LM14 Screen Protector Semi Hard Sheet safeguards the camera’s LCD screen against dust, scratches. It’s supplied with a separate protector sheet for the top display panel.

For further details of the full range of lenses and accessories for the α99, please visit www.sony.co.uk/hub/dslr/accessories

Sony’s new SDXC UHS-I memory card, SF-64UX(64GB) with ultra-high speed interface (UHS-I) compatibility, offers significantly higher transfer speeds up to 94MB/s (read) and 43MB/s (write). The SF-64UX is ideal for burst shooting with the α99, without missing the moment. It also enables rapid data rates when transferring content including large RAW images or video files to your PC.

The new cards have been subjected to rigorous Sony testing, in order to achieve high levels of reliability and data integrity. Additionally, the new cards are water-resistant, and are designed to perform under a wide range of operating temperatures. Users can also shoot with ease knowing their photos and videos are protected thanks to Sony’s File Rescue Software* which can help recover photos and videos that may have been accidentally deleted.

(*This software is available for Sony memory media products customers through free download at www.sony.net/memorycard)

The new α99 full-frame Translucent Mirror camera from Sony is available in the UK from early November 2012.

1 Among interchangeable-lens digital cameras with a full-frame image sensor (as of 12th September 2012). According to Sony internal survey.

2 The α99 is equipped with Sony’s newly-developed Multi Interface Shoe. This is capable of accommodating various accessories for photo and movie shooting such as flash and microphones, while drawing power from the camera. It’s also compatible with Sony accessories that use the standard ISO 518 accessory shoe. The Multi Interface Shoe was developed as a common shoe for imaging products by Sony – such as digital still cameras, digital video cameras and interchangeable lens cameras – promoting compatibility among accessories and offering an enhanced shooting experience for users.

NEX-VG900E full frame HD video – full info

Sony introduces first 35mm full-frame Handycam®
 
NEX-VG900E interchangeable lens Full HD camcorder
 

  • 24.3 effective megapixel Exmor full-frame CMOS sensor
  • Compatible with full-frame A-mount lenses via supplied adaptor (also compatible with growing range of E-mount lenses)
  • Full HD 50p/25p/24p progressive movie recording
  • Extensive manual controls and ‘seesaw’ zoom lever
  • Quad Capsule Spatial Array Microphone for high-quality stereo and 5.1ch sound
  • High contrast XGA OLED Tru-Finder
  • 7.5 cm (3.0”) XtraFine touch panel LCD

Video makers can embrace the limitless expressive power of full-frame imaging with the new Handycam® NEX-VG900E E-mount interchangeable lens Full HD camcorder from Sony.

It’s joined by the Handycam® NEX-VG30E that builds on the success of the NEX-VG20E, sharing the same APS-C image sensor as its predecessor while adding several enhancements.

Handycam® NEX-VG900E

Offering supreme imaging quality and generous creative options, it’s the first Handycam® with a 35mm sensor to fully exploit the artistic potential of interchangeable lenses by Sony and Carl Zeiss.

With a resolution of 24.3 effective megapixels, the Sony-developed Exmor CMOS sensor inside the NEX-VG900E is around 40 times larger than the equivalent in ordinary consumer camcorders. It’s also more than twice the size of the APS-C sized sensor found in other interchangeable lens Handycam® models.

As well as permitting beautiful ‘bokeh’ (defocus) effects with the growing range of α lenses, its high sensitivity assures extremely clear, low-noise images. The large sensor size assures effortless reproduction of the finest tonal gradations, helping the most demanding cinematographer fully realise their creative vision.

The sensor also allows the NEX-VG900E to shoot full-frame 24.0 effective megapixel still photos, with all the quality you’d expect from a pro-class DSLR camera. Still images can be shot in RAW format for total post-processing freedom.

Beautiful, film-like results can be achieved by shooting video in 25p/24p progressive mode, with Cinema Tone Gamma™ and Cinema Tone Colour™ offering precise control over cinematic colour grading effects. AVCHD version 2.0 standard 50p recording is additionally supported, maximising the range of creative options for movie-makers to explore. Even greater flexibility is provided by a choice of new Picture Effect modes, enabling easy creation of artistic ‘in-camera’ treatments whether you’re shooting HD video or stills.

Video shooting is further enhanced by a ‘seesaw’ lever that allows smooth, polished electronic zoom control. The lever adjusts optical zoom when using compatible E-mount lenses that feature built-in zoom drive. The lever controls electronic zoom when using the camcorder with fixed focal lenses for impressive creative results.

As an extra refinement, the NEX-VG900E switches automatically from full-frame operation to APS-C mode when an E-mount or A-mount DT lens is attached. This allows users to get the most out of their collection of DT lenses that are optimised for cameras with a smaller APS-C image sensor.

The camcorder also comes supplied with the LA-EA3 adaptor that lets photographers use full-frame A-mount DSLR lenses at their designated focal length.

There’s a generous palette of control options and manual settings to satisfy the demanding video enthusiast. Aperture priority, shutter speed priority or manual exposure, are all selectable and white balance can be adjusted manually to suit the demands of any scene. Iris, shutter speed, and gain adjustments can be easily made via logically-positioned direct access keys. Accurate manual focusing is assisted by the camcorder’s pro-style display peaking function, complemented by a one-touch focus magnification button on the top of the grip.

Serious videographers will welcome the detail-packed XGA OLED Tru-Finder that offers high-contrast image monitoring with superbly natural colour rendition. Complementing the Tru-Finder, there’s an adjustable XtraFine touch-panel LCD monitor, with Sony’s unique technology for high contrast images with rich, deep blacks.

High-quality audio is a crucial part of the HD video experience with the NEX-VG900E. A unique Quad Capsule Spatial Array Microphone features four omnidirectional capsules that can be switched for stereo or 5.1ch surround recording. Recording levels are adjustable, with accurate visual confirmation provided by an audio level meter on the LCD display. There’s also a headphone jack for direct monitoring of sounds being recorded.

The new Multi Interface Shoe provides compatibility with accessories including the optional XLR-K1M adaptor kit that adds a high-quality mono shotgun mic and pro-standard XLR connections.

Handycam® NEX-VG30EH/VG30E

Sharing many of the pro-oriented enhancements of the NEX-VG900E, the Handycam® NEX-VG30E succeeds the acclaimed NEX-VG20E. With a resolution of 16.1 effective megapixels, the new camcorder’s Exmor™ APS HD CMOS sensor assures outstanding image quality with the range of interchangeable E-mount lenses.

Like the NEX-VG900E, it’s possible to shoot smooth, cinematic Full HD video footage at either 50p, 25p or 24p (progressive) frame rates, supported by a palette of artistic Picture Effect modes.

The NEX-VG30E also features the same XGA OLED Tru-Finder, comprehensive manual controls and ‘seesaw’ style zoom lever as the NEX-VG900E.

The NEX-VG30EH comes supplied as a kit with the new E PZ (Power Zoom) 18-200mm F3.5-6.3 OSS (Optical SteadyShot) lens that provides a versatile range from wide angle to telephoto. Offering smooth, quiet AF operation and Optical SteadyShot image stabilisation, the lens also features an additional ‘seesaw’ lever on the barrel for smooth, professional-style zoom control with adjustable speeds.

The Handycam® NEX-VG900E and NEX-VG30E camcorders from Sony are available in the UK from November and December respectively.

Cyber-shot DSC-RX1 full information

Cyber-shot™ DSC-RX1 from Sony is world’s first1 compact camera with 35mm full-frame 24.3 effective megapixel sensor
 

  • Full-frame imaging from a compact camera that’s drastically smaller and lighter than any full-frame DSLR
  • Exmor™ CMOS sensor with approximately 24.3 effective megapixels for flawless, detail-packed photos and Full HD video
  • Carl Zeiss Sonnar T* 35mm F2 prime lens; with Macro mode for 20cm minimum focusing distance
  • Extremely wide sensitivity range from ISO 100 – 25600
  • Intuitive manual controls with aperture and focus rings
  • New Multi Interface Shoe compatible with optional flash, electronic viewfinder, optical viewfinder etc.

The extraordinary new Cyber-shot™ DSC-RX1 from Sony offers photo enthusiasts the chance to explore the creative possibilities of full-frame imaging with a compact digital camera that fits easily in the palm of your hand.

At just 482g (with battery and memory card), it packs a 35mm full-frame sensor and wide aperture F2 fixed-focal lens into a camera body that’s perfectly proportioned for travel and street photography as well as portraits and day-to-day shooting.

Far smaller and lighter than any full-frame DSLR, the Cyber-shot™ RX1 offers superb imaging quality that’s previously been the domain of high-end professional DSLR cameras. The unified lens/body design assures razor-sharp alignment of the sensor and optical components, bringing out the full potential of the lens to deliver unprecedented image quality, right to the very edges of each frame. Full manual control options are complemented by effortlessly intuitive operation, making it easy for enthusiasts to realise their creative vision without sacrificing portability or operating comfort.

In a world first1 for digital compact cameras, the Cyber-shot™ RX1 features a 35mm full-frame Exmor CMOS sensor. With a resolution of 24.3 effective megapixels, it’s over twice the area of the APS-C sensor inside much bulkier DSLR cameras. Capable of resolving the finest image details and subtle textures, the full-frame sensor assures absolute fidelity, rich colours and an impressively broad dynamic range.

The large sensor size also helps boost the camera’s sensitivity range to a generous ISO 100 – 25600. Sensitivity can be adjusted as low as ISO 50 in expanded mode2. Similarly, ISO settings as high as 102400 can be achieved using Multi Frame Noise Reduction, allowing the Cyber-shot™ RX1 to capture natural, low noise handheld images in near-dark conditions without needing flash.

Complementing the full-frame sensor is a fast, bright Carl Zeiss Sonnar T* lens with a fixed focal length of 35mm – a versatile choice for portraits, street photography and everyday shooting. Derived from the German word “Sonne” (“sun”), the Sonnar name reflects the ability of the lens to capture as much light as possible. This premium lens features newly designed optics including an Advanced Aspherical (AA) glass element which contributes to the camera’s extremely compact palm-sized dimensions without sacrificing optical performance.

The lens’s wide F2 maximum aperture and 9-bladed circular aperture enable beautiful ‘bokeh’ (defocus) effects to rival professional-class DSLR camera lenses. A Macro switching ring on the lens barrel instantly shortens minimum focusing distance to just 20cm (from image plane), making the Cyber-shot™ RX1 ideal for capturing small close-up subjects with exquisite detail.

Data from the Exmor CMOS sensor is handled by the evolved BIONZ engine that also powers full-resolution burst shooting at up to 5 frames per second. The BIONZ processor can output image data in 14-bit RAW format, giving advanced users immense freedom over developing, post-processing and managing RAW files to match their personal creative vision.

Despite the camera’s extraordinarily compact dimensions, photographers are offered a virtually limitless palette of options for creative expression. The Cyber-shot™ RX1 also offers a full range of manual control modes, just as you’d expect from a no-compromise DSLR camera.

Dedicated lens rings allow fingertip control of focus and aperture, while a DSLR-style Focus mode dial on the front of the camera allows easy switching between focus modes. Top-mounted exposure compensation and mode dials are ergonomically placed for easy operation, while custom function and AEL buttons fall comfortably to hand without interrupting your creative flow.

Accessed via the camera’s pro-style control dial and cross keys, Quick Navi mode allows fast, intuitive adjustment of camera settings which is ideal when using the camera with an optional viewfinder. In addition, the camera also features a memory recall (MR) mode that allows storage and instant recall of up to 3 sets of camera settings.

Other refinements include a MF Assist function that magnifies a portion of your image to simplify fine focus adjustments. There’s also a pro-style peaking function that highlights sharply-focused areas of the image on screen – adding the optional FDA-EV1MK electronic viewfinder kit allows even greater manual focusing precision.

Pixel Super Resolution Technology allows magnification of image size without sacrificing pixel count, maintaining far higher quality than achievable with conventional digital zoom. The camera also features a Smart Teleconverter function that crops a central portion of the image sensor, boosting effective magnification by 1.4x or 2x. Thanks to the full-frame sensor’s extremely high pixel count, even zoomed and cropped images maintain generous amounts of fine detail when blown up at large print sizes.

In addition to flawless stills, the Cyber-shot™ RX1 can capture high-quality, low-noise Full HD movie footage at a choice of 50p/60p or 25p/24p (progressive) frame rates. 24p recording enables the Cyber-shot RX1 to transform everyday scenes into film-like movies, making it easy to record beautifully atmospheric video in very low lighting. The camera also provides a full complement of PASM exposure modes to give photographers absolute creative flexibility during video shooting.

Artistically ambitious photographers can even fine-tune images with a choice of 13 Creative Styles, plus a wide range of inspiring ‘PC-free’ Picture Effect treatments. Furthermore, wider compositional possibilities are offered by Auto HDR and D-Range Optimiser, bracket shooting (Exposure, DRO or White Balance) and Auto HDR shooting modes. The camera even offers a Digital Level Gauge that indicates camera pitch and camera roll on the LCD screen for straight, even horizons and architectural shots.

Shooting possibilities for stills and video are broadened by the camera’s Multi Interface Shoe3 that accepts a growing range of accessories. Options include a powerful flash, electronic viewfinder, optical viewfinder, clip-on LCD monitor. Also available are a high-quality jacket case, lens hood and thumb grip for sure, comfortable handling.

Learn more about official accessories by Sony for the Cyber-shot™ RX1 here:

www.sony.co.uk/hub/cyber-shot-digital-cameras/accessories

The Cyber-shot™ RX1 also comes preinstalled with PlayMemories Home (Lite Edition) software, allowing easy image transfers to a PC for managing, editing and printing. Available for free download, a full version of PlayMemories Home adds movie editing and disc burning.

Also available as a free download, PlayMemories Studio allows game-like editing of photos and videos on PlayStation®3. Images can be shared easily via PlayMemories Online, the cloud-based sharing service from Sony that simplifies ‘any time, any place’ viewing on a wide range of connected devices.

The new Cyber-shot™ RX1 full-frame digital compact camera from Sony is available in Europe from December 2012.

1 Among compact digital still cameras. According to Sony research, as of September 12, 2012.

2 Recordable dynamic range is reduced at sensitivity levels below ISO100.

3 The Cyber-shot™ RX1 is equipped with Sony’s newly-developed Multi Interface Shoe. This is capable of accommodating various accessories for photo and movie shooting such as flash and microphones, while drawing power from the camera. It is also compatible with Sony accessories that use the standard ISO 518 accessory shoe. The Multi Interface Shoe was developed as a common shoe for imaging products by Sony – such as digital still cameras, digital video cameras and interchangeable lens cameras – promoting compatibility among accessories and offering an enhanced shooting experience for users.

Sony aims for the sky – RX1?

According to Sonyalpharumours, on Wednesday Sony will not only announce the Alpha 99 full frame SLT, but will reveal a compact bodied full frame fixed lens model with the same 24 megapixel sensor, called the RX1 and taking the concept of the RX100 zoom ‘one inch’ format model to a new height (photo – from Sonyalpharumours).

It’s a retro-appeal camera, with a mode dial, an over-ride dial, lens apertures set round the lens, a conventional hot shoe and a a manual focus ring which doubles as a fast means to switch between two AF ranges, 20-35cm and 35cm to infinity. It has no viewfinder, just a fixed positon rear screen, but apparently will have EVF and optical finder attachments.

Inside Sony, I think there’s been some serious divisional competition between the former Minolta Alpha group and the more powerfully connected Cyber-shot team. All the indicators are that sometime earlier this year the two divisions were put into a competing situation and there may ultimately be one winner, one loser. That’s how Sony culture is structured, according to every insider view I have heard since Sony acquired the Minolta camera brand in 2006. Groups, departments, teams and individuals are weighed against each other as well as against their industry rivals. The winners are rewarded with promotion and bigger budgets, the losers have to survive with diminished resources. It’s a deliberately competitive environment.

I believe the Cyber-shot team got hold of this sensor to compete head-on with the NEX team. This is part of Sony’s internal camera design Olympics and only Gold counts. The RX100 has been a sell-out success and given the division the authority to take Cyber-shot models to places where the DSC-R1 was once heading before Alpha and NEX arrived on the scene and shut that line of development down. They kept the RX100 under wraps to spring it on the world – including other Sony camera teams – as a blockbuster surprise. Now they have done the same with the RX1. Where next?

But, will a camera like this sell? Did it ever sell in the era of film – and why should anything be different today, give or take temporary fashions for the limitations of retro-style specifications?

Konica Hexar 35

In fact there were plenty of cameras with lens specifications around 35mm f/2 over the years, but very few survived after zoom lens compacts arrived. The era of Hi-Matics, Canonets, Yashica or Ricoh 35s saw apertures up to f/1.7 and focal lengths ranging from 35mm to 45mm. By the time 20 years of zoom lens SLRs and 10 years of zoom compacts had destroyed that market, it had moved in favour of boutique level pocktables like the Contax T2, retro Rollei 35, Minox 35 and their copies. The 35mm focal length won the day in the smaller bodies, but f/2.8 replaced faster apertures to keep size and weight down.

Minolta broke away with the titanium-bodied TC-1, one of the most expensive such cameras ever made. It had a 28mm f/3.5 G-series lens designed with a large rear element and a concave front surface, using new aspherical technology. Instead of a variable aperture, it used perfectly round laser cut Waterhouse stops which eliminated diffraction effects. This proved a valuable precursor to digital camera lenses later on, needing the same technology for ultra-short focal lengths and small sensors.

But it was left to Konica reintroduce the rangefinder-style body with a fixed 35mm f/2 lens, in the form of the Hexar 35, another very expensive and beautifully made design. The Hexar was the fin-de-siècle failure that bad design detail ensured it would be. No-one wanted a leaf shutter camera – even one with a near-silent slow winding mode for filmset and concert shooting – that was limited to 1/250th top shutter speed. Leaf shutters were perfect for synchro-sun flash, but plenty of focal plane shutters could do 1/250th. If the camera had been equipped with a 1/500th or 1/1000th top speed its hybrid electronic control system and Aperture Priority basis would still have missed the mark. Konica went on to show a full Hexar RF Leica M mount system at photokina 2002, finishing it off with some revolutionary additions at the same event in 2004, by which time Minolta and Konica had merged.

Within days of the close of photokina, the Hexar 35 and the RF system were discontinued. Whatever feedback they had received, the merged Konica Minolta dropped the Konica brand and with it the highest end Konica cameras. The fact was they had not sold, and had not sold profitably.

Which could be why the Cyber-shot division is aiming for the sky with the RX1, and pricing it at a rumoured $2799.

That’s over £2,000 in British money with VAT, for a fixed lens camera – even though it will shoot 5fps, 24 megapixels, and has a Zeiss Sonnar lens. It may also be the first time a Sonnar has covered this angle at f/2, previous incarnations have either been f/2.8 at 63° coverage or been longer relative focal lengths at f/2 (I stand to be corrected on this – the Contax G system used a 35mm f/2 Planar).

To that $2799 you can add a viewfinder and possibly other accessories. This is one camera for which I would expect to see both 0.7X wide angle and 1.5X tele lens converters (24.5mm and 52.5mm equivalents). Combined with intelligent cropping and resampling, the 24 megapixel full frame should also offer 1.4 or 1.5X and 2X digital tele, or perhaps a variable digital zoom, and a likely 3X/2X/1.4X range of video crops. Then again, Sony may be playing very clean and avoiding these options even if they would improve the experience of a fixed 35mm lens for many users.

35mm logic

I have to say that at this point, Sony has left me behind. It’s neat focal length in the Leica system because it’s been around in optically acceptable form and fast maximum apertures since the 1960s.

The classic lens sets for 35mm full frame started with the 35/50/85-90mm trio. This was because so many rangefinder cameras used interlens shutters and interchangeable front groups rather than entire lens in front of focal plane shutters. Anything shorter than 35mm was expensive and huge, anything longer than 90mm couldn’t be focused very reliably. So we ended up with launches like the Leica CL – just a 40mm and 90mm lens pair. But Leica had moved on long before in the M-series, starting with the M2 (35mm widest lens) alongside the M3 (50mm, anything wider needing ‘spectacles’ or a separate finder), then the M4-P which for the first time put 28mm on board. So the Minolta CLE Leica-mount kit appeared with 28/40/90mm as its kit, and fifteen years later the Contax G system came with 28/45/90 as an alternative to the more affordable 35/90. Konica offered their RF straight out with a 28/50/90mm set.

Fuji’s XPro-1 has been a success, and its launch lens set is 27/52.5/90mm. Now there’s a big gap from 18mm to 35mm (actual focal lengths) and they will fill it with a 35mm-equivalent. But would you want that on its own? I know someone who has a Leica M9 with just a 35mm f/2. That was a budget decision. Given enough money they would have the 24mm, 28mm, 50mm, 75mm and 90mm too!

Well-mannered and perfect though it has every chance of being, a 35mm f/2 on full frame is as uninspiring for me as the Fujfilm X100’s fixed 23mm f/2 on APS-C was. It’s a good focal length for small groups indoors, general house and garden shots, and street candids. It’s too short for conventional portraiture and too long for environmental editorial people pix. It’s easy to use and fairly boring.

Most of all, it is extremely easy to MAKE. The history of photo gear is one where lenses with a 60-65° angle of view have been good. Unlike early 28mms, 35mms were OK. The same angle of view on any compact digital, of any sensor size, is still good and many are f/2, even if they don’t offer the same lazy solution to defining the centre of interest in a shot.

I do not need to spend $2799 to get what the RX1 appears to offer. I didn’t even want it in the NEX-7 and have never felt tempted to buy the 24mm f/2.

I think, perhaps, that after a long time of ignoring photographers Sony finally listened. They may have listened to the wrong ones. The lens enthusiasts of dPreview represent a tiny minority. Those who will spend nearly $3k on a fixed lens compact – even with full frame – are even fewer.

Now, when do I get to apply for a job selling it into China? There is one place with new buying habits to match this camera perfectly!

– David Kilpatrick

Should NEX go full frame?

Sonyalpharumours has posted a firm rumour that there will be a full-frame NEX. Anyone who understands the design of camera bodies, and the geometry of optical projection, has known from the start that this was possible given the design of the E-mount.

Those who have made uninformed comments (all over web forums!) to the effect that the rear register is ‘too short’ or would cause problems simply don’t have their brains switched on. There is no such thing as a camera body which is too thin or a mount to focal plane register which is too short.

Sony already designs lenses for NEX APS-C which incorporate what amounts to an extension tube to push the rear nodal point and exit pupil positions as far forward as needed for optimum illumination and matching of off-axis ray bundles to the sensor’s microlenses, filter array and cover glasses. That’s why the 30mm Macro is not so very different in size from putting a 30mm f/2.8 Alpha SAM macro on an adaptor (and that’s why we do exactly that here!).

What matters for full frame is a correlation between the clear lens throat diameter (the bayonet mount inside width), the sensor size, and the register.

The NEX system uses an 18mm register. That is the term of the distance between the front surface of the bayonet mount on the body (or rear surface of the mount on the lens) to the sensel layer surface of the sensor. There is a very small adjustment made in all digital cameras for the four physical layers which usually go between the sensor and the lens: the RGB filter layer (so thin it has no effect), the microlens layer (again, no effect), the low-pass or anti-aliasing filter and the infra-red cut and protective self-cleaning outermost glass. These filters may be combined into a single glass but in NEX they remain separate.

The sensor requires an image circle of just under 30mm allowing for assembly tolerances of 0.5mm overall in positioning and conformance of the lens axis. If in-body stabilisation is used, this diameter must be increased to 35mm at least; some Konica Minolta documentation suggests that a clear diameter closer to 40mm was needed for the original AS/SSS.

For full-frame, the required image circle is 44mm and the maximum diameter for in-body stabilisation could be between 49mm and 54mm depending on how Sony’s statements about sensor travel are understood (“5mm in any direction” could mean the total scope is 5mm, or that 5mm travel from axis might be possible). A good idea of the actual travel of an APS-C sensor with IBIS is given by the Pentax K-5, which has a manual sensor shift function allowing the user to move the sensor off-axis for a slight rising or cross front effect – but only by 1.5mm. This sounds more realistic though it would, of course, be a great feature if you could shift a sensor 2.5mm or an extreme 5mm – every lens with enough coverage would become a PC lens!

Now let’s compare these image circles with the lens throat diameter and its distance from the focal plane.

The Alpha system has a register of 44.5mm and a clear lens throat internal diameter around 42mm. Allowing for the orientation of the film plane and the position of control connections and the electronic contact array, the Alpha mount ends up providing an almost exact fit for the optical projection path if a 45mm diameter image circle is needed. Even if a 2000mm non-telephoto lens was attached, its image would cover the sensor without physical shadow vignetting caused by the mount.

It is important to remember that a 44.5mm register allows space for the reflex mirror, but also allows the image forming light to spread out from a rear element positioned over a wide range of possible distances, from just inside the camera body (by about 5mm before the mirror would hit it) to a good three or four centimetres in front of the mount. This allows a larger overall image circle and indeed most SLR lenses produce one greater than 50mm diameter. That’s how the Alpha 900/850 is able to offer in-body SSS, and also why certain lenses show vignetted corners occasionally when SSS is active because their image circle is only just sufficient to cover the sensor in its central, parked position.

This is a very accurate representation of 24 x 36mm sensor areas excluding any of the surrounding assembly, showing that the internals of the E-mount could be modified to fit FF. The white line shows the 24 x 36mm in the sensor plane, relative to the APS-C sensor. The red line shows the 24 x 36mm sensor as it relates to the mount, in the flange plane. The two rectangles are needed to show the size accounting for the perspective of the macro lens used to take this shot.

The NEX E-mount appears to have not much smaller a diameter, but this is deceptive. You need to look INSIDE the mount and study the position of the electronic contact pins. Once these are considered, the actual clear diameter is not 46mm at 18mm from the sensor (apparently bigger than the A-mount) it is 39mm at 12mm from the sensor. The contacts are located 5mm into the camera body and occupy a clear 3mm zone. The outermost contacts in the array are positioned  sufficiently far from the extreme corner of a theoretical 24 x 36mm sensor to allow a full frame design, assuming most of the other detail of the darkchamber design is changed to ensure the widest possible clear area.

Ideas about putting SSS and full frame into such a NEX are wishful thinking, unless the camera was to be huge and the possibility of the lens mount innards shadowing part of the image was accepted. There’s just enough room to fit a full frame sensor, and no more.

It is more likely that Sony would introduce a range of new full-frame lenses with OSS, or non-stabilised adaptors for Alpha lenses designed to allow an unrestricted light path. It is also possible that a stabilising optical adaptor could be made, but we’d put that as the least likely option and one which would probably cost over $1000. Sony would more likely to put an electronic pixel-shift IS into a full frame NEX, though at present this only works with video and imposes a slight crop (1.87X) on what would be the maximum 16:9 frame area.

As for suggestions that existing NEX lenses might cover full frame, that is also uninformed speculation. They won’t and don’t. The same applies to the LA-EA1 and LA-EA2 adpators – neither of these would allow Alpha lenses to be used on the NEX and cover full frame, though there are a few wide angle lenses which might just squeeze their image through the small internal baffles. A few of the third party adaptors for lenses such as Leica M might allow coverage, some would not, depending on exactly how the light baffles and inner mount components have been designed. For APS-C NEX, it pays to add baffles which prevent stray light and flare; for FF NEX, the same baffles might vignette the image.

The question of sensor design is another matter, but it can be assumed many owners would use a full frame NEX to host legacy full frame lenses from a wide range of systems. Most of these have a degree of telecentricity which removes corner colour shifts. New full frame NEX lenses would be designed to match the new sensor, so that would not be an issue. Old rangefinder lenses would have no more problems on full frame NEX than they do on, say, a Leica M9. Sure, there would be issues, and weak combinations alongside strong ones.

These would not over-ride the value of a full frame NEX body. Good photographers can use any format well. They do not demand ‘the full frame look’ or believe that any one format is going to change their work in some way to make it superior to others. There’s a place for every format and choice is a good thing. End of story.

– David Kilpatrick

If you like the analytical and practical approach taken to this subject you may enjoy our new international quarterly magazine, Cameracraft, which publishes its first issue in September, replacing the old Photoworld with a bigger, better publication covering all systems and approaches to image-making from film to the future. See our subscription page and sign up to receive it from the very first edition!

 

 

Crop or cram? Pixel density versus the big view…

The Alpha 900 offers an unrivalled view through its 100% prism finder. The extra brightness, as well as the size and clarity, make most subjects far easier to photograph well. For some users, however, the full frame camera brings a disadvantage in terms of reach and resolution. You need lenses 50% longer (and thus twice the size, and four times the cost!) to fill the frame with the same distant sports and wildlife subjects. I don’t need to remind anyone how popular these two subjects are with amateurs, and sometimes, how important to professionals.
Continue reading »

Alpha 900 – finder and frames

It’s not going to be long before we see the Alpha 900, and some cameras are known to be out there on trial in the hands of Sony staff and pre-release testers. I am not one, so rest assured, this is not a leak! What can you expect from the Alpha 900’s full-frame prism finder?

(Note: this post was written in early August – it is now 100% certain that the finder is 100%, and at 0.74X magnification will be – as had been hinted – the largest of all current DSLR finders in apparent visual terms except the EOS 1Ds Mk III which is 0.76X. Comparisons: EOS 5D 0.68X, Nikon D3 0.70X)
.

Continue reading »

Nikon's new D700 FX camera

The Nikon D700Nikon announced and released their long awaited D700 camera today in London, bringing the D3’s FX sensor to a wider market. dPhotoexpert was at the launch event. The D700 is closer to the D300 in physical design yet retains many of the D3’s advantages – in fact, it’s easier to say what it loses, other than weight and bulk, rather than what it offers.

Compared to Nikon’s flagship camera, the D700 offers one CF card slot, a 95% viewfinder coverage for the 12.1Mp sensor which has a new dust reduction system similar to the D300, and a slower frame-rate still twice the speed of a Canon EOS 5D – with the optional battery grip, it can manage 8 fps, and with standard EL3a batteries it delivers a respectable 5fps. The weather sealing is slightly improved over the D300, and the viewfinder/prism design is similar to the D3 but incorporates a pop-up flash. (Report – Richard Kilpatrick).

The D700 goes on sale in July with a UK RRP of £1999 inc VAT – more details will be added soon.

More details added by David Kilpatrick –

* Capture NX2 is required to process the raw files, and there is no update for either View NX or Capture NX (1.3.x) on any Nikon website to allow these to process D700 files – yet. Capture NX2 is provided as a 60-day free trial with the D700, but the CD does not update registered, purchased copies of NX. I’ve installed NX2 but the experience is not helpful when it comes to assessing the quality of the images – for this, I almost have to have ACR and to be able to study larger output sizes rapidly in the raw conversion window.

ACR and Lightroom are now updated to work with the D700, and the same goes for an increasing number of other raw conversion utilities.

We have an D700 here, we are using it now – the high eyepoint type viewfinder is one radical difference between this and the D300 body, and the experience of using the D700 is very different.

1 2 3