Sony Alpha 99 full press release

Sony introduces full-frame α99
 
A-mount flagship 35mm full-frame camera debuts Dual AF System and pro-style video features
  • Flagship camera with Translucent Mirror Technology and newly developed 24.3 effective megapixel full-frame Exmor CMOS sensor
  • World’s first full-frame camera1 with Dual AF System with 19 sensors (including 11 cross sensors) + 102 AF point system (focal plane) and a new AF range control function to set the distance range recognised by the AF system
  • Very wide sensitivity range ISO 50-25600 (at expanded sensitivity setting) with extremely low noise
  • Advanced Full HD 50p progressive movie shooting with non-stop Continuous AF and pro-style audio features
  • XGA OLED Tru-Finder with 100% frame coverage
  • Enthusiast-class handling with tough, light magnesium alloy body, weather seals and revised Quick Navi Pro interface

Ruggedly built to cope effortlessly with tough assignments, the α99 sets new standards of imaging performance, creative options, user-focused ergonomics and reliability to satisfy demanding enthusiasts.

Unsurpassed imaging performance and responses

Unique to the α99, a newly developed full-frame Exmor CMOS sensor with 24.3 effective megapixels is teamed with a highly advanced BIONZ image processing engine. This powerful sensor/processor combination guarantees unprecedented levels of imaging performance with still and video shooting.

Now advanced photographers can explore the creative possibilities of full-frame imaging plus the responsiveness of Translucent Mirror Technology.

The eagerly awaited successor to the flagship α900 DSLR, the new α99 is the first Translucent Mirror camera from Sony to feature a full-frame 35mm image sensor.

The full-frame sensor’s resolving power is enhanced by a newly developed separate multi-segment optical low-pass filter. Assisted by an all-new front-end LSI, the BIONZ engine processes massive amounts of image signal data from the Exmor CMOS Sensor at very high speeds. Together with a powerful new area-specific noise reduction (NR) algorithm, this achieves a 14-bit RAW output, rich gradation and low noise.

The evolved BIONZ processor boosts maximum sensitivity range (in expanded sensitivity mode) as wide as ISO 50-25600 – a range of 9 stops. Its unprecedented processing power also enables the α99 to shoot a burst of full-resolution images at up to 6 frames per second or 10 fps in Tele-zoom high speed shooting mode.

For the first time ever, the 19-point AF system with 11 cross sensors is complemented by a multi-point focal plane phase-detection AF sensor. With no less than 102 AF points, this additional AF sensor overlays the main image sensor. Harnessing the power of Translucent Mirror Technology, this unique Dual AF System permits ultra-fast, accurate autofocusing that maintains tracking focus even if the subject leaves the 19-point AF frame.

The α99 also debuts an advanced new AF-D continuous autofocus mode that’s supremely effective with moving subjects. The 19-point AF system provides reliable depth focusing information. It’s complemented by the 102-point multi-point focal plane phase-detection AF sensor that copes effortlessly with subjects traversing the focal plane.

From launch, new AF-D mode is supported by the SAL2470Z, SAL2875, SAL50F14, SAL300F28G2, SAL70400G and SAL500F4G lenses. More lenses will be supported via future firmware updates.

As a further focusing refinement, a new AF range control function allows users to set the distance range recognised by the AF system. This smart feature significantly aids operability if you’re focusing on distant sports action through a nearby wire mesh fence.

Crafted for videographers and movie-makers

The α99 inherits the world-leading ‘cinematic DNA’ from professional movie cameras and high-end camcorders by Sony. The unmatched resolving power and sensitivity of the full-frame sensor is complemented by advanced features optimised for professional video production.

The α99 supports the needs of professional movie-makers, offering full-frame Full HD 50p/25p (switchable to 60p/24p) progressive video recording to meet AVCHD Version 2.0 specifications. As introduced on the α77, Full-time Continuous AF Movie allows smooth, non-stop tracking of moving subjects. Other movie-oriented enhancements include real-time Full HD video output via HDMI, and uninterrupted ‘dual-card’ recording using both of the camera’s media slots.

For extra convenience during movie shooting, a silent new multi-controller is easily accessible via a dial on the front of the camera body. This allows smooth, silent adjustment of exposure compensation, ISO sensitivity and metering method, shutter speed, aperture and audio record levels during Full HD video capture. Shooting stamina is tripled by partnering the camera with the new VG-C99AM Vertical Grip that houses up to three batteries in total (see below). It’s even possible to exchange batteries ‘on the fly’ without interrupting movie recording.

Audio features have also been significantly enhanced to meet the exacting needs of serious videographers. An audio level display and adjustable audio record levels are joined by a headphone jack for accurate in-the-field monitoring. The optional XLR-K1M adaptor kit adds a high-quality mono shotgun mic and pro-standard XLR connections for dependable audio acquisition.

Uncompromised handing for serious photographers

The XGA OLED Tru-Finder gives a detail-packed view of your subject, offering 100% frame coverage with exceptional brightness, contrast, clarity and resolution.

You’ll enjoy a full 100% view on the Tru-Finder screen, even if you’re shooting with a DT lens that’s optimised for cameras with an APS-C sensor. Angle of view is converted automatically for image recording and display. This viewfinder is completely compatible with the APS-C format and displays scenes using the entire finder screen.

Complementing the Tru-Finder, there’s also a three-way tiltable 1229k-dot (VGA equivalent) XtraFine LCD with WhiteMagic™ technology to boost screen brightness in outdoor conditions.

Despite its uncompromising pro-class credentials, the α99 is the world’s lightest1 35mm full-frame interchangeable-lens digital camera. A weight of just 733g (without lens and battery) is made possible by Translucent Mirror Technology, while high-rigidity magnesium alloy panels contribute to an extremely tough yet light design.

Weather-resistant seals protect against dust and moisture, while controls and buttons are ruggedized for years of unflinching operation on virtually any assignment. The camera’s stamina and reliability is underlined by a redesigned shutter block that’s tested to approximately 200,000 release cycles.

Ergonomics have been refined for a smooth, seamless workflow that doesn’t interrupt your creative focus. Enhancements include a re-designed grip, while switches and button shapes are differentiated for intuitive fingertip operation without taking an eye off your composition. There’s also a new exposure mode dial lock that prevents accidental rotation.

Further evolved from the acclaimed α700 and α900, the newly-developed Quick Navi Pro interface gives quick, intuitive one-handed access to shooting parameters.

The camera can also be operated via remote PC connection. Supported functions include switching between still/movie shooting, plus automatic transfer of still images from camera to PC for enhanced studio workflow. *Editor’s note: betcha there’s no Mac app given Sony’s historic attitude to Apple!

Designed for professionals: new lens and accessories

The full-frame imaging capabilities of the α99 make an ideal complement for the new 300mm F2.8 G SSM II (SAL300F28G2) lens. Designed for demanding sports and wildlife applications, this bright super-telephoto offers a significantly uprated optical design and improved handling compared with its predecessor. The Sony-developed Nano AR Coating on optical surfaces assures flawless still images and HD video with reduced flare and ghosting, offering enhanced contrast with crisp black, while a new LSI drive circuit offers faster, more accurate autofocus with enhanced tracking AF. The dust- and moisture-resistant design makes the lens ideal for the toughest outdoor shooting assignments.

In addition, a new wide-aperture Carl Zeiss A-mount prime lens is now under development. Optimised for superb results with the camera’s 35mm full frame image sensor, the Planar T* 50mm F1.4 ZA SSM will be available in Spring 2013.

Offered exclusively as an option for the α99, the brand-new VG-C99AM vertical grip can house and manage three batteries in total (including the camera’s own on-board battery). Resistant to dust and moisture, the grip is ideal for lengthy shooting sessions in the studio or outdoors.

The range-leading HVL-F60M is a powerful flash (GN60, in metres at ISO 100) with built-in LED light that’s ideal for creative applications with stills or movie shooting. Smart functions include wireless multi-flash ratio control and Sony’s unique Quick Shift Bounce adjustment, while operation can be controlled quickly via the flash’s intuitive Quick Navi system. Resistant to dust and moisture, the HVL-F60M comes supplied with a bounce adaptor for flash, and a colour conversion filter for use with LED lighting. Ideal for the α99 and other cameras featuring the new Multi Interface Shoe, the HVL-F60M can also be used with Auto-lock Accessory Shoe cameras via the supplied ADP-AMA Shoe Adaptor.

Compatible with 49mm and 55mm diameter lenses, the HVL-RL1 Ring Light offers highly effective LED illumination of small subjects that’s ideal for macro shooting. Its high output level (approx. 700 lx/0.3m) is approximately four times brighter than the previous model. Brightness can be adjusted steplessly for precise control of creative lighting effects. Operation can also be switched between full-ring illumination for shadowless lighting and half-ring illumination to create shadow effects. The optional FA-MA1AM Macro Light Adaptor is required when using the Ring Light with SAL30M28 or SAL50F18 lenses. Compatible with the Multi Interface Shoe of the α99, the HVL-RL1 can also be used with cameras that have an Auto-lock Accessory Shoe via the supplied ADP-AMA Shoe Adaptor.

The new XLR-K1M XLR Adaptor Kit meets the demanding audio needs of professional movie production. It provides two pro-standard XLR terminals for connecting the α99 with professional microphones and mixing consoles. Operating flexibility is maximised by MIC/LINE input selection and separate adjustment of two channel levels. The adaptor kit comes supplied with the ECM-XM1 monaural shotgun microphone, but may also be used with a wide range of professional microphones. An optional bracket is required when using the XLR-K1M with the α99.

The RMT-DSLR2 Remote Commander allows wireless shutter release for still images and start/stop control of video shooting. As well as the α99, it’s also compatible with other α A-mount and E-mount cameras that include a remote control receiver. (Our highlighting in red – this may NOT mean that it can operate video on other cameras, just that it will operate their existing remote functions – dependent perhaps on firmware updates)

Styled to reduce carrying fatigue, the LCS-BP3 Backpack is designed to meet the stringent demands of professional photographers. Its generous capacity can hold the α99 camera body plus Vertical Grip and attached telephoto zoom lens, together with 3-4 spare lenses, accessories and a 15.5” laptop.

The ADP-MAA is a new shoe adaptor that allows Multi Interface Shoe2 cameras to be used with Auto-lock Accessory Shoe accessories. Conversely, the ADP-AMA she adaptor allows Auto-lock Accessory Shoe cameras to be used with Multi Interface Shoe accessories.

The PCK-LM14 Screen Protector Semi Hard Sheet safeguards the camera’s LCD screen against dust, scratches. It’s supplied with a separate protector sheet for the top display panel.

For further details of the full range of lenses and accessories for the α99, please visit www.sony.co.uk/hub/dslr/accessories

Sony’s new SDXC UHS-I memory card, SF-64UX(64GB) with ultra-high speed interface (UHS-I) compatibility, offers significantly higher transfer speeds up to 94MB/s (read) and 43MB/s (write). The SF-64UX is ideal for burst shooting with the α99, without missing the moment. It also enables rapid data rates when transferring content including large RAW images or video files to your PC.

The new cards have been subjected to rigorous Sony testing, in order to achieve high levels of reliability and data integrity. Additionally, the new cards are water-resistant, and are designed to perform under a wide range of operating temperatures. Users can also shoot with ease knowing their photos and videos are protected thanks to Sony’s File Rescue Software* which can help recover photos and videos that may have been accidentally deleted.

(*This software is available for Sony memory media products customers through free download at www.sony.net/memorycard)

The new α99 full-frame Translucent Mirror camera from Sony is available in the UK from early November 2012.

1 Among interchangeable-lens digital cameras with a full-frame image sensor (as of 12th September 2012). According to Sony internal survey.

2 The α99 is equipped with Sony’s newly-developed Multi Interface Shoe. This is capable of accommodating various accessories for photo and movie shooting such as flash and microphones, while drawing power from the camera. It’s also compatible with Sony accessories that use the standard ISO 518 accessory shoe. The Multi Interface Shoe was developed as a common shoe for imaging products by Sony – such as digital still cameras, digital video cameras and interchangeable lens cameras – promoting compatibility among accessories and offering an enhanced shooting experience for users.

What the buyer wants – NEX-F3, Alpha 37 and more

SONY is sometimes accused of not listening to the Alpha or NEX owner when it comes to what features they include in new cameras, and what modifications they offer through firmware to existing owners. There are two points of view on firmware; some criticise updates, saying the product should have been released with the right stuff inside on Day 1 while other praise those makers who issue frequent and valuable firmware revisions because they ‘supporting the product’.

My view is the latter; if I own a camera, I really don’t care much what bells and whistles are added to its successor in hardware as I know the only way to get those is to buy the new model. But I do value firmware updates and I know that far more could be done to keep the firmware of older models in top condition. I guess they would have to issue a new camera manual and don’t want to improve the user interface or add functions not included in the original!

Sony does listen, but it listens harder to new potential buyers than to existing owners. It listens to the untapped market, to the people who buy someone else’s camera instead of Sony. After all, it’s already got the existing owners. It only needs to listen to them as far as the next camera upgrade goes for the proportion who will be likely to change frequently.

The new NEX-F3 is a perfect instance of listen to the unconverted market. They want an LCD which aims forward so they can film themselves; amateurs only get one take for their home porn movies and can be very disappointed to find they’ve cut the important bits off. I am, of course, talking about guitar porn, cookery porn, motorcycle porn and not the other kind…so Sony has made the LCD flip over the top.

They have in addition made this entry-level NEX 3 model use the latest 16.1 megapixel sensor, generally agreed to be the most versatile all-round sensor on the market, and accept the accessory FDA-EV1S EVF which doubles Sony profits on any camera sold, should be buyer decide later they want an eye-level electronic finder. The battery life has been extended by 18% to 470 shots per charge, and if you buy the higher capacity 1300mAh Japanese made third party cells in place of the Sony 1080mAh ones which cost six times as much, you win twice. Except that I’ll bet the NEX-F3 adds another layer of battery compatibility protection, just like the 5N and 7 did. The third party cell makers had to update their stuff fast and warn buyers that they needed a compatible type, people owning older clone cells found they didn’t work in the new cameras.

Since this camera is the first NEX (or any Sony Alpha/NEX) to offer in-camera USB connection recharging, the odds are not just high that clone cells won’t work. It’s what bookies call a dead cert. Being able to use your iPhone charger (just a different cable) or similar USB mains-plug or in-car 5v adaptor cuts down on all the rubbish we have to carry when travelling.

To keep the distinction between entry level 3 and better 5 to 7 models clear, Sony has restrained the video to 50/60i with final 25p (European) or 24p (US) output. The better models offer full 50/60p as their top quality. But Clear Image Zoom is included, which does a pretty good job for the everyday user of providing a 2X electronic converter with acceptable full resolution sharpness. There’s no microphone input and some new software which sounds horrible is bundled – PlayMemories Home. Sony, just because you got to use words like Play, Walk, Memories, Man, Stick, Station and so on in various products does not mean they have to be repeated in child-like product names for all eternity!

Sony has added the pop-up flash from the NEX-7 to the F3. Is this a good idea? I predict some deeply disappointed flashers.

It rises just so high above the camera, and it’s not absolutely identical to the 7; the position appears comparable. The new F3 will be sold with the usual single or twin kit lenses I’m sure, and not so often with the latest 18-200mm LE (lite version E?) zoom which has been launched at the same time. This lens is a direct counterpart to the Tamron 18-200mm VC III f/3.5-6.3 which I’ve been used since early March. Though Sony has stated that the OSS (VC) is not as efficient as the more expensive Sony SEL 18-200mm, my findings using the Tamron are that it’s modified to be very smooth during video as has the AF action, which is less volatile than other SEL lenses.

Now I’m sure this lens will be very popular – the Tamron version is sharp and quite beautifully finished, with Sony’s rubberette dust attractor grip absent and a slick metal barrel skin with broad easily cleaned rubber ribs doing the zoom and focus work instead. Tamron’s £499 lens looks like £699 where Sony’s £699 will look like £299 after you have handled it with bare skin for a few minutes. Sony should issue silk gloves with all their lenses.

But here is the downside of choosing such a lens as your kit zoom for the NEX-7 and presumably for the F3. The pop-up flash just doesn’t clear the lens well enough and to use flash with the 18-200mm you must buy the accessory FVL-F20S flash which lifts the light source high enough the camera to avoid what you witness below.

You may also be unimpressed by the uncorrected complex barrel distortion of the 18-200mm Tamron at close range, demonstrated here by photographing an A2 printout of an Adobe lens correction target. Actually, the Tamron profile included in the latest Adobe Camera Raw does a nearly perfect job of straightening up this lens at average scenic distances. This profile should also work with the new Sony lens. What’s good about the Tamron is that its lens identity is recognised by ACR and the correct profile auto-selected.

What you are looking at above is the shadow of the lens, at 18mm, with the lens hood removed and the NEX-7 internal flash used. It is possible the NEX-F3 will be a very small amount better than this.

Here is what happens if you carelessly leave the lens hood on! An A2 target is much the same size as a two-face close-up wide angle portrait, or a typical pet shot or party shot; times you use flash. The shadow does not get smaller further away, but you can dispose of it by using focal lengths over 150mm. Wow!

In other words, Sony has listened to what the public wants – pop-up flash and a superzoom they can afford – but in such a compact body, with no pentaprism-shaped top to allow a good ‘lift’ when the flash is popped up the result will be more than a few unhappy beginners. That is some shadow by any standards.

The Alpha 37

And so to the second consumer-focused launch by Sony this month, the also-16-megapixel Alpha 37. You can think of it technically as a NEX-F3 in an Alpha SLT format – same ISO 16000 top but with 100 at the bottom thanks to the SLT pellicle mirror, same 5.5fps regular motordrive, similar 450/500 shots per battery charge depending on whether you use the power hungry EVF or the economical rear LCD.

You can see here how much extra height the GN10 pop-up flash gains compared to the GN6 of the F3 or NEX-7. It should clear many lenses even with hoods attached, and may well prove usable combined with the new SAM lens for the Alpha range – a slightly more compact 18-135mm f/3.5-5.6 using a type of SAM motor which is claimed to be silent and which allows DMF. Remember that earlier SAM designs with the audible motor have not allowed DMF and have even been quite picky about exactly how you set MF instead of AF. The presence of DMF in the new lens indicates that the SAM internal motor focusing may be a lot closer to SSM than to some basic flavours of SAM. I like the idea of this lens, 18-135mms can be surprisingly good though the f/5.6 long end maximum may actually be slower than many 18-200mm or 18-250mms when set to 135mm (they tend to be f/5 at that point).

Is it a Tamron? Probably not. Tamron lens locks move forward to lock the zoom action. Sigma lens locks, though traditionally placed on the left side, move back towards the camera to lock the lens. Sigma has flavours of HSM which allow DMF and others, like the HSM on their 18-250mm OS, which don’t. I look forward to reports on exactly how the 18-135mm works and whether its superior SAM makes it a hidden bargain.

And also, of course, whether the pop-up flash casts interesting shadows!

There is not a lot more to say about the A37 except that it shares most limitations imposed on the F3 such as the video format and bitrates, that it has the usual bells and whistles including an auto portrait crop framing mode, and resembles an A55 body size updated to be more ergonomic. It also has an updated A55 type EVF, not to be confused with the OLED Tru-Finder of the NEX-7, A77 and A65 but identical to the A57. There is a spectacle friendly EVF mode, which as far as I can tell reduces the image area to match the A55 (which wastes loads of its screen as a blank surround). The big improvement made by the A57 was to deploy the full area of the 1440k-dot screen instead of using it as a milky luminescent border for a small image. The downside is that spectacle wearers find the full area hard to see edge to edge.

The rear screen is 2.7″ not 3″, since this is a very compact body, and uses the double hinged up/down tilt mechanism without rotation or forward facing options.

I did not expect to see GPS in this model, but after several expeditions with the Alpha 77 I am beginning to doubt whether onboard GPS as provided by Sony is much help at all. There have been far too many entire shoots where not a single frame has GPS data. It is something I find extremely useful but it’s only useful if it works most of the time. It’s odd to see USB charging introduced in the F3 but not present in this model. Lack of communication between product teams?

The pricing of the A37 will be very competitive indeed.

With all these various May launches – NEX-F3, 18-200mm LE, Alpha 37, 18-135mm SAM – there’s clear evidence that Sony listens first to mass market dealers and to potential new adopters of large sensor interchangeable lens cameras, those moving up from compacts. Everyone who has ever passed an Alpha or NEX fitted with an 18-55mm lens to a compact zoom user will know the reaction – that the zoom doesn’t even begin to zoom, by their standards. They can’t believe you can not frame a face from twenty feet away.

All Sony’s advances are geared to making these larger format cameras more satisfying to the upgrading user.

Now we just wait for them to produce 2012’s models designed to keep the upgrading Alpha and NEX user equally happy.

– David Kilpatrick

See B&H story and links for current B&H prices/order info

Alpha 77 and 65 Firmware 1.05 released

A new firmware update further boosts operability of the α77 and α65 Translucent Mirror cameras from Sony.

Available for free download from 29 March 2012, firmware version 1.05 adds several enhancements to both cameras. Alongside heightened responsiveness, it improves operability of both cameras with a wider choice of A-mount optics by Carl Zeiss and Sony.

March 29th – am, the download is not showing up on the links yet – it should be in place sometime during the day.

Shading and aberration compensation

Both cameras can now intelligently correct vignetting, lateral chromatic aberration and distortion for a total of 11 A-mount lenses, including a further six models that are now supported:

  • SAL-24F20Z (Carl Zeiss)
  • SAL-85F14Z (Carl Zeiss)
  • SAL-135F18Z (Carl Zeiss)
  • SAL-70300G (G Lens)
  • SAL-35F18
  • SAL-50F18

Improved responses

Operability of both cameras is further improved with a number of refinements that facilitate smoother, faster handling.

  • Auto review responses are now quicker, without a ‘processing’ message being displayed
  • Time between power switch operation and power off has been shortened
  • Front/rear dial responses are improved

Autofocus responses and precision

Autofocus accuracy is now improved when focusing on scenes with wide contrast difference between objects. In addition, AF speed is improved when using both cameras with the recently-announced SAL500F40G 500mm F4 G SSM super-telephoto lens by Sony. You’ll be able to focus faster on athletes, wildlife and other distant subjects with this bright, high-magnification lens that is available exclusively to order.

Firmware version 1.05 for the α77/α65 Translucent Mirror cameras by Sony is available as a free download to registered owners from 29thMarch 2012 at:

A77 for PC: http://www.sony.co.uk/support/en/product/SLT-A77/downloads/FW_A77_V105_WIN

A77 for MAC: http://www.sony.co.uk/support/en/product/SLT-A77/downloads/FW_A77_V105_MAC

A65 for PC: http://www.sony.co.uk/support/en/product/SLT-A65/downloads/FW_A65_V105_WIN

A65 for MAC: http://www.sony.co.uk/support/en/product/SLT-A65/downloads/FW_A65_V105_MAC

The EVF future

At photokina 2010, Paul Genge from Sony pretty much told me that Sony’s future lay in the EVF (translucent mirror or otherwise, Electronic View Finder) models. He was not able to say anything firm. Since then, I’ve spoken to him on several occasions and he has repeated that Sony left all options open but the EVF design was likely to be the way ahead. What he has not said directly to me is that conventional SLR design – Optical View Finder – was off the roadmap.

EVF does away with the need for the finder to be positioned anywhere near the optical axis. Noses can safely hit thin air not a rear screen. Unless you are left eyed. NEX-7 with ocular surround fitted.

Although Sony did not attend Focus on Imaging 2012, the UK website TechRadar secured an interview statement during Focus week, in which Paul appears to have confirmed without ambiguity that the future was EVF-only, and that the forthcoming full frame successor to the Alpha 900 would be an SLT-EVF design. At the same time, we learn that the 70-200mm SSM G and 70–400mm SSM G lens are to be revised for 2013.

We know, from several sources, that Sony is not currently making all its lenses – even the high end ones – in one facility, or in its own workshops. I believe the 70-400mm SSM G is a contracted-out design and that the 70-300mm SSM G has always been made by a third party lensmaker. This is nothing new; the Minolta 100-400mm APO was patented by Tokina and sold to Minolta as an exclusive (no-one else got the lens) and the same company made some if not all the 100-300mm APO lenses. Using different sources means that various types of coating are appearing; traditional Minolta style – the multi achromatic coating, Carl Zeiss T*, Tamron’s BBAR-derived coatings, some Sony multicoatings of unknown pedigree on Chinese SAM lenses, and a new water and oil resistant coating due to be used for the revised 70-200mm and 70-400mm.

This coating is nearly always combined with weather or splash proof design, and companies which have the ability to apply it include Hoya (Tokina, Kenko, Marumi, Pentax), Olympus, Canon, Nikon, and Sigma. Sigma is very significant as they have installed new coating lines recently and they are going through a bit of a subcontracting boom. Their facilities are all in Japan, they are on high ground and were slightly affected by the earthquake but not by the tsunami. They have a long history of building lenses and cameras for Leica, Carl Zeiss, Panasonic, Olympus, Canon/Kodak and interchangeable lenses for nearly all the major names.

If the high end tele zooms are to be revised, weatherproofing and the new coating will certainly arrive along with a synchronisation of lens appearance and finish. But I’m willing to bet something else is involved. The SSM focus system is only partially suitable for contrast-detect operation. It works, on static subjects, but unless some major advance is made in CD-AF it’s lacking the refinement and speed of the AF found in SEL (native Sony NEX) lenses. I’ve tested the 70-400mm on the LA-EA1 with NEX-7, I can work with the lens comfortably on most subjects and the camera is very good at refusing to take the shot until focus is 100% locked.

All that just to get 2X the magnification – NEX-7 with LA-EA1 and 70-400mm SSM G (an operational kit, if not fast) compared to Tamron 18-200mm NEX lens with the correct type of contrast-detection friendly focus motor and protocols.

What Sony must surely want to do is dispose of the SLT (‘translucent’) pellicle mirror and the Phase Detection AF module. It makes most sense to focus, meter, view and expose from one single sensor. In order to do so, lens focus motors need a slightly different control protocol. SSM lenses are already CD-AF compatible, as are SAM onboard focus motor lenses, but they don’t match the NEX system SEL lenses. Sigma HSM and Tamron USD Alpha mount lenses are not CD-AF compatible and do not work correctly on the LA-EA1 adaptor. Upgrading matters most with tele lenses, and they are also most likely to be used in adverse weather for wildlife, news or sports. So my guess is that the upgrade to these lenses will be comprehensive and that it will look forward to possible Sony Alpha bodies with either no SLT mirror, or a movable SLT mirror and choice between PD-AF and CD-AF.

As for the EVF itself, it’s one stage away from being better than a very good optical finder on balance of qualities. Unlike optical finders, the EVF is not susceptible to user eyesight error (incorrect dioptre correction, combined with eye focusing accommodation) and presents the user with a low resolution but otherwise very accurate view of the image focused on the sensor. It can do this at light levels where optical finders become difficult to use, while also presenting a review of the captured image if desired – ‘shot success’ confirmation.

Differences between the ‘identical’ EVF of the NEX-5n accessory finder FDA-EV1S and the NEX-7 fixed built-in version are mostly down to the difference between the 16 megapixel generation 2 sensor, and the 24 megapixel. Response speed, low light noise, quality of colour and contrast are all influenced more by the two very different sensors. User observations that one is better or worse than the other will nearly always be down to this, and variations in settings between the two cameras compared.

There are things you can do on an EVF, such as magnifying a focus point well away from the centre, which simply can’t be done at all with an optical finder and may not always be convenient to do on a rear screen. The fact that EVFs permit eye-level video shooting, and that video is now a permanent feature of the Alpha class of camera from entry to semiprofessional, makes the EVF design change more inevitable.

Paul Genge had a short exchange of information with me when I was considering selling my Alpha 900 and all my frame Alpha lenses (after starting to use the A77). He said I’d regret selling my good full frame lenses when I replaced my Alpha 900 with a full frame model I would just not believe. His message was ‘you wait – you’ll not regret it’. So, I sold my old Minolta-era full frame lenses and bought myself a brand new 28-75mm f/2.8 SAM, Sony 50mm f/1.4 (replacing Minolta vintage), a 24mm f/2 Carl Zeiss SSM, and a 70-400mm SSM G. I kept the Alpha 900  and a few lenses I like which are unique in their function, such as the Samyang 85mm f/1.4 manual, the Sigma 70mm f/2.8 Macro, the Sigma 12-24mm and an old 16mm f/2.8 full frame fisheye. Instead of getting out of full frame, I re-invested in it.

I’m expecting the Alpha 900 replacement to be either an SLT design like a scaled-up A77 with 36 megapixels, or a second generation hybrid SLT design with a mirror you can raise to use CD-AF or manual live focusing. I’m hoping that it will appear with a new 28-75mm, 24-70mm or better midrange f/2.8 with improved SSM, weatherproofing and new coatings like the 16-50mm f/2.8 DT.

– David Kilpatrick

Sony Alpha 77 review – tomorrow today

It must be two years ago, at least, that an Australian sports photographer confided he had seen a Sony prototype which would blow away everything – an Alpha which could shoot at incredible frame rates (he mentioned 15fps) and follow focus. It may have been something unlike the Alpha 77, which follows focus 12fps with locked preset exposure, or in any appropriate exposure mode at 8fps. Or it may have been an early experiment. Whatever it was, the 77 is close to this rumoured prototype .

The Alpha 77 is a successor to the Alpha 700. Here is beside my old and well-worn 700.

The viewfinder

The Alpha 77 is a camera that points the way for future development, whether of DSLT (Sony ‘Translucent’ mirror technology) or entirely mirrorless SLR-mount bodies. It’s the OLED viewfinder with 2.4 megapixels of self-illuminating RGB which changes the game. It makes the transition from optical to electronic viewfinders likely for everything except a limited choice of professional optical viewfinder DSLRs. EVFs will not be unique to Sony and it will continue to develop in resolution, colour fidelity and refresh rate.

But this type of viewfinder has a specific limitation. Unlike earlier EVFs, the Sony OLED has a threshold below which it simply turns the pixel illumination off entirely. To save battery power, this is set to a relatively high black level and clips the three-quarter tones straight to d-Max. All EVFs are slightly unsatisfactory to the human eye because there’s no real shadow detail to see if you switch your glance away from well-illuminated parts of the view. The new OLED has dead black shadows and it doesn’t matter how much your brighten it, the cutoff is based on exposure level in the image.

If you own an A55/33/35 then the new finder is so far removed it might as well be an entirely different era, not just a generation. The area surrounding the huge visual image is dead black, not milky and luminescent like the A55. The shooting information is set neatly outside the image, not overlaid at the edge overlapping picture detail. The colours are bright and the information text, though smaller to the eye, is crisper and far more legible.

One comment (added after this was first published) – the A55/33/35 may be considered better in very low light. In good light, the OLED/24 megapixel combination is excellent. In low light, it shows noise until focus and exposure are confirmed by shutter pressure, at which point the view clarifies and the noise reduces. In near darkness, its shows very strong noise, mainly red, which largely obscures any visible detail. In conditions where exposure was 15 seconds at f/2.8, ISO 100, using the A55 and A77 side by side the A55 was better. It looked grey and flat, but surprisingly detailed and bright into shadows which were too dark to penetrate by eye. The A77 gave a contrasty screen or finder image with little useful detail, nothing in the shadows, and very strong noise. Clearly the CMOS sensors are responsible for whatever level of detail is visible, and the A55 sensor seems to me have a couple of stops more lift to tones on the threshold of its sensitivity. The EVF types differ in the A55 showing more shadow detail with lower contrast, and lower colour saturation so the noise does not look bad. Bottom line, the A55 is half way to night vision; the A77 is like turning on an old UHF analogue colour TV, no signal, just noise.

There will be users who complain that having vital information just above and below the image area means they don’t see it because of their specs. But the A77 has the best eyepoint and visibility for this info of any model to date. All I can say is that if you ensure you are using the EVF correctly, you will always be in touch with what the camera is doing.

This shows a ‘busy’ finder display – in fact, everything overlaid on the photo here can be turned off leaving just the active focus point (a single one, if you use centre spot focus) and the neat information bars above and below the image area. The rest of the field is dead black too, not milky grey like the Alpha 55, and the contrast is high. This image is dropped in and has no connection to the information displayed!

The result is a very graphic view of your composition. Despite the impressive size of the apparent viewfinder image, it is not as large visually as the Alpha 900. The A700 for example is 95% field at 0.90X of a 1.5X sensor coverage, a viewfinder ‘size index’ of 0.57X (0.95X0.9/1.5). The A900 is 100% of full frame at 0.74X, index 0.74X. The A77 is 100% of 1.5X format at 1.09X, index 0.726X. It’s therefore closer to the A900 than the A700.

The A77 eyepiece glass is much closer to the eye than the A55 or previous SLR models, and the upper positioned eye-sensor turns the finder on and off with precision saving power but causing no delays.

But has Sony got the figures right? The A55 claims to be 1.1X and 100% view. Each camera has a different eyepoint – 27mm for the A77 compared to a mere 19mm for the A55 – but this should not be allowed to influence the stated apparent magnification. Placing one camera to each eye, the A77 has an almost 20% larger apparent viewfinder field (linear) than the A55 and about 30% larger than the A700. It is just a fraction smaller than the A900 as the calculations indicate.

It looks to me as if the A55/35 manual misrepresents the EVF size in that camera, it very clearly is not larger than the A77. Perhaps they include the dead space not used for the image but for data. In the A77, the data display is tight and efficient and it can show everything you ever want including the ISO in use when you select Auto ISO.

All the other figures agree. It also makes the A77 finder view an almost perfect match for Nikon’s full frame DSLRs, which have a slightly smaller apparent screen size than the A900.

The less-shadow-detailed aspect of EVF works for composition much the same way early Leica viewfinders did. The scene is simplified, and this tends to concentrate the eye on impact and simple compositions. Using the A900 alongside the A77, I was struck by the way the A900 puts you in touch with texture, colour, subtle light, and fine details. The A77 reduces the world to simpler tones and connects you to shapes, composition and impact.

As for flicker, shearing when panning, clarity of focused detail – well, these are all limitations, but much reduced in this new finder. What is not so limiting as the A55 or the earlier NEX models is the speed of startup from sleep. The A77 finder really does go to sleep (the A55 is very good at failing to switch off) and wakes up so rapidly, as your eye approaches the finder, you don’t miss the shot. Combined with the mere 1/20th second shutter lag, this SLT gets back to the responsiveness of classic non-AF SLRs.

You can cycle through these displays or choose to skip one or more when pressing the Display button (there’s a menu item to configure exactly what information each press shows you, with separate settings for the EVF and the rear screen). These diagrams from the manual do not represent the finder very well. Our colour version, using a finder overlay file supplied by Sony, gives an accurate view of what looking through an A77 finder is like.

Here I am, I’ve written stacks about the viewfinder and not even begun to describe it fully. Tell you what – go and find one, try it. I can’t photograph it adequately (I have tried) and it would be exhaustive to go through the deep menu settings of the A77 which let you decide for example how many different information-display setups you scroll through when you press the Display button. Don’t want EVER to see the horizon level guage? Then set the camera to skip it. Hate the graphic display of f-number and shutter speed scales against each other? Deselect that too.

 

From the Alpha 77 Karma Sutra – left, position for portrait photography; right, position for those who like to video themselves and still look as if they are in eye contact with the viewer.

And then there’s the rear screen. It has a double hinge and rotate action, of which more later. It is a top grade screen, 3 inches and nearly a megapixel. If you plug an HDMI monitor in to the camera, that will take over providing a better solution for studio or video previewing. Even a 20 inch or larger HDTV set looks sharp when fed from the Alpha 77.

The menus of the A77 require the attention to website presentation detail best reserved for the galley-slaves* of dPreview. Trust me, if there’s anything which can be set on any other Alpha, it’s probably settable on the 77 or not there at all. I’m sad to see that I can only control my auto ISO range minimum between 100 and 12800, and my maximum between… 100 and 12800! Of course this is great. I can have auto ISO over any possible sensible range but not ISO 50.

*Queried on dPreview forums – I’m an ex-newspaperman. Galleys are proofs of type (or the metal itself) and if you’ve ever worked on the TV listings or the Sports pages, you’ll know what it means to be a galley-slave in editorial terms – form before function, and function before fun! Well, I can have fun. I do not have to reproduce every single screen and menu because there’s no big boss saying that’s how it is done! It’s great work that dPreview undertake. But as someone else has already done it, I prefer to spend my energy doing the stuff they haven’t done. Then you can read both.

ISO 50? What use is that, with less dynamic range than 100?* It’s a great deal of use. In my studio with powerful flash – which this camera can cope with perfectly, having a setting to over-ride exposure simulation in the EVF/screen and do auto gain for modelling lights – it gives me an extra stop instead of being forced to work at a setting like f/13 or get overexposure. Outdoors in bright light it combines with the 1/8,000th top shutter speed to remove the need for a 4X ND filter to get superwide apertures, but due to reduced dynamic range, it’ll still clip whatever highlight would have been clipped with an overexposed ISO 100 shot. In the studio I can control my contrast to use it well.

*This is Sony’s own statement in the manual, page 139: “The recordable range of the brightness of a subject (dynamic range) is slightly narrower for areas where ISO is less than 100.”. DxO Labs tests actually say that colour depth, tone depth, dynamic range and signal to noise ratio are all at their best if you set ISO 50, but they also show that ISO 50 is really ISO 63 overexposed a bit and ISO 100 is really ISO 80 underexposed a bit. Where that leaves the intermediate 64 and 80 settings on the camera we can only guess.

As well as all the info in the finder and on the back LCD, you get this top plate LCD which means you can close the back one. Even when the camera is asleep (power save mode) the sensor must still be receiving and handling the image, as the exposure display will change when you move the camera around. I’d guess this is a low power mode which also enables the system to continue to monitor exposure between frames during sequence shooting.

At first I did not fall in love with the Alpha 77 – when my purchased firmware 1.02 version body locked up on me in front of one Canon and one Nikon user I was just a little angry with it. It could have done this somewhere quiet, on its own, without spectators. Even now with firmware 1.03 I am not sure it won’t repeat the cataleptic fit, but it shows no signs of doing so. See my section on the Movie mode later on, though…

The SLT mirror and ghosting

I’ve tested the Alpha 77 in the most demanding lighting conditions. Sony says the SLT mirror (a very thin film of plastic stretched on a frame) has new mirror and antireflection coatings. They have also paid extra attention to the design of the AF module and the interior of the darkchamber, to avoid reflections.

Though some colour fringes on the bright water definitely hit this 16-80mm CZ shot (along with a colour bokeh issue making those in the foreground magenta and those to the rear greenish) there was no hint of any ghosts or flare in dozens of shots taken in conditions like this.

This light is extreme, and the patches of sun and reflection are placed exactly where the Alpha 55 tended to produce flare. The Alpha 77 shows no sign of it, and has not in any of our photographs so far.

As far as loss of sharpness goes, I do not believe there is any more significant sharpness loss from the SLT pellicle than there is from, for example, the rear filter permanently fitted into a 300mm f/2.8 Apo G tele. Both are between the lens and the sensor and both are plane clear optical elements. If anything the glass thickness and distinct double air to glass surfaces of a rear mounted filter make it far more likely to degrade an image than the SLT. Almost any filter you fit in front of the lens is going to have a greater effect (unless you spend a stack of money, a really bad effect on 24 megapixels – we’ve replaced our older Minolta, pre-digital Hoya and other filters with the latest Sigma EX DG after testing them).

This is just a routine test I ran at all ISO settings to check colour and tonal response. Not noise. I already knew before doing this that the noise thing was a non-issue for the simple reason that this sensor beats anything else out there; I’ll start pixel-peeping for noise when another maker comes along and shows they can do this pixel density better. The colour is also very consistent indeed across the ISO range and the feathers in the mask retain the expected detail up to ISO 3200.

This picture was taken using a setting I quickly discovered is just perfect for news, PR, presentations and images needed quickly from events – the Small JPEG in camera, with DRO enabled, at ISO 3200. Sampling down to one quarter of the file size (still large enough for an A4 print) creates a dead sharp, low noise image. Photographers do some good, occasionally – this is a cheque for £3000 being presented to DJ Dave Lee Travis for the PACE Centre charity, by the Master Photographers Association. Their annual dinner happened just a week after I got my Alpha 77. I was confident enough to risk taking all my press and PR shots on the new camera.

And this is a 100% pixel level view of that shot without any post processing.

Input and feedback

Then again, having to set up the camera and realising the full extent of the customisation possible through the Menu and Fn buttons, I felt depressed. This was almost like handling a Canon 7D – one of those cameras where, if someone passes it to you, you can never be sure if it has been configured only for photographing flocks of ibis flying behind bare poplar trees. Would its 19 AF points and 11 cross type sensors do the 7D trick of locking on to a sweet wrapper someone dropped on the lawn instead of the wedding group a yard further away?

Well, yes. The A77 can do that sort of wrong stuff if left on wide area focus – but it doesn’t light up the wrong AF points in the finder to fool you, and it does not require programming of AF preferences to avoid proximity or response speed errors (both Canon and Nikon pro models can disappoint if used ‘out of the box’, and need their defaults changing depending on your typical photo situations). Instead, if provides very accurate feedback about which sensors are being used. And it has Face Detection which really works, because this is a live view camera 100%. I have never liked Face Detection much until the SLT EVF generation arrived. Even then, not much.

Face detection kept the focus on photographer Paul Cooper (right) accepting the president’s ribbon of the MPA from Henk van Kooten (left) despite Henk’s focus-target jacket moving into the foreground of the AF zones. Taken by stage lights at ISO 3200

I had to take a few shots where a person receiving a presentation was facing the camera, and the presenter often stepped into shot with back of head to the lens. With Face Detection on, the A77 never once switched focus to the nearer person, and always stayed locked on to the subject facing me. This is a situation where the above-mentioned makes, if allowed to use wide area or multi point AF, tend to shift focus to the foreground intruder because as conventional DSLRs they don’t have Face Detection in optical viewfinder mode.

The auto exposure of the A77 seems to be more closely linked to active AF points than any previous model. It may have 1,200 metering zones on the CMOS sensor but it will bias strongly towards correct exposure at the point or points of focus, especially if the central point coincides with a very bright are. I do not mean it is literally spot metering. I mean that, for example, in my office with medium lighting and a very bright computer screen if the camera is aimed at the screen the exposure in matrix mode, with centre spot focus, becomes correct for the screen and the rest dark. When the screen is moved away from the centre zone, exposure increases by two stops even though the overall image contains about the same brightness.

What I’m seeing may not be the same sort of meter-linking-to-AF that is found in the Canon EOS 400D, as an example. This will give you over or under exposure if the focus point hits a dark or light area. The A77 biases towards avoiding overexposure. A dark subject at the central focus point does not seem to brighten the image the same way a very light subject, like a screen, darkens it.

This is not like separate metering cell TTL, the classic Minolta honeycomb. It isn’t even like a camera with centre weighted or spot optically fed meter cells. Every point on the sensor is a spot meter even though you can only ‘spot meter’ from the centre. Every point is equally sensitive down to EV–2 (ISO 100 with f/1.4 lens) and up to EV17. It is four times more sensitive as a matrix/centre-weighted meter than the Alpha 900 and a staggering 16 times more sensitive than A900 spot metering mode. It also has +5 to -5 EV exposure compensation compared to the A700’s+/-3EV (A900 – 3EV, expanded to 5EV by later firmware, but the 700 was never improved – see comments, originally I referred to A900 as 3EV either way, as that’s in the manual). And whatever things the SLT mirror does, it seems to feed the new AF module plenty of light – it’s able to focus in conditions half as bright as the A900. Added comment: the A77 metering is four times as sensitive as the new Canon D1 X, so although that camera has amazing sensitivity up to ISO 204,800 the A77 will actually meter exposure in lower light.

So, after a couple of weeks, I began to realise that the A77 was giving an even lower failure-rate than the A55. I had learned which settings to prefer – three zone focus for example is far better than old-style wide area and almost makes single centre spot focus redundant. I was finding that exposure is generous but never highlight-clipped, because it’s read from the actual imaging sensor; you can trust the simulation given by the EVF, too, and adust the +/- over-ride with confidence.

The camera stopped being complex and started to suit my declining mental powers. Life is a curve. You start just learning to set shutter, aperture and focus. In your prime, you want to set twenty different things for every shot and switch from P to A to S to M with C or S or A and -2 sharpness and ten stop HDR then portrait look for the next one. Ultimately as the brain cells sneak off for a nap you find good old shutter speed, aperture and focus do you just fine.

If you need reminding in big print, let the rear LCD see the light of day, and you get this big clear information pane on demand.

Now some cameras have fooled me, there are no dials and they just hid this stuff from me so I’d end up with bad things like the optically soft set of landscape pix I shot at 1/2000th and f/5.6 (wide open) on the NEX-5 last month. But the Alpha 77 with its top plate LCD info display, its ‘come to life’ burst of finder shooting information when you take first shutter pressure and confirm focus – well, it is constantly reminding me what I am doing. I know other cameras and other Alphas have finder displays, even the NEX was probably telling my longsighted eyes what it was up to, but the Alpha 77 presents working information better than any camera I’ve used. It is simply a very clear and well designed display both in-camera and on the rear screen.

If you enable image review, the SLT cameras slow down. I fold the rear screen to face the camera back. I have turned off image review. I shoot with confidence just as I would once have done on film and sometimes I do not check a single image until I’ve copied the card contents to my computer.

Button pushing

The Alpha 77 has loads of buttons despite Sony’s one-time insistence that they planned to have fewer mechanical components in future. There are nine push buttons, one rocker button and one control wheel on the back of the camera alone; five push buttons, one collar switch, one shutter and control wheel on the RH top. Then there’s the stray stop-down button, the lens change release and the AF-mode switch living round the mount.

Rear screen folded away and protected – that’s how I use the camera all the time. Plenty of buttons to push – and you can have fun swapping their functions round to confuse your friends!

Several of these buttons can have their functions modified so they no longer do what it says on the silkscreened white or blue print (white for shooting mode, blue for playback). If you are particularly odd you can even swap round functions and confuse people who borrow your camera (shades of Canon!). If you are relatively normal you can leave this well alone. You may customise the stop-down preview button to show the final picture effect instead (stop-down plus picture style and shutter speed result) and through the menus you can change the behaviour of lens-resident Focus Hold. The instruction manual omits to mention these are on the lens, and not on all lenses – some owners have spent ages looking for the Focus Hold button which does not exist on the camera.

What’s most odd about the A77 is that three of the main dedicated-function buttons are completely interchangeable. ISO (next to the shutter) AEL and AF/MF (under your thumb) can all be changed to do anything from the following long list of functions:

AEL Hold*
AEL Toggle*
Spot Meter with AEL Hold*
Spot Meter with AEL Toggle*
AF/MF Control Hold*
AF/MF Control Toggle*
Object Tracking
AF Lock*
Aperture Preview (stop down)*
Shot Result Preview (final picture simulation)*
Smart Teleconverter*
Focus Magnifier*
Memory
Exposure Compensation*
Drive Mode*
Flash Mode
AF Area
Face Detection
Smile Shutter
ISO*
Metering Mode
Flash Compensation
White Balance*
DRO/Auto HDR
Creative Style
Picture Effect
Image Size
Quality

*The entries I’ve marked with an asterisk already have their own dedicated buttons for which these are normal function choices (AEL button, for example, covers all the first four but can only do one function, preset in menus).

There is one button you may want to modify if you own lenses with a Focus Hold button. The AF/MF button, by default, performs this function with most lenses (it switches to MF when pressed, the same effect as holding focus). So it’s almost a spare button, given that there’s also an AF/MF switch on SSM/SAM lenses and a body AF/MF/S/A/C switch too. Since it sits right next to the AEL button and closest to the rear control wheel, it a natural choice for any function you might want to use in a hurry.

You can not change the function of the Finder/LCD manual switch button, the Drive Mode, the White Balance or the Exposure Override. You can switch the Preview and Smart Teleconverter buttons between two functions each only. The Fn button accesses all the parameters you can’t reach directly through any custom button (like setting the Auto ISO range) and most that you can (like Face Detection). Its full function list is:

Memory Recall (only present when mode dial set to MR)
Scene Selection (only present when mode dial set to SCN)
Movie (only present when mode dial set to Movie)
Drive Mode
Flash Mode
AF Area
Object Tracking
Face Detection
Smile Shutter
ISO and ISO Auto setup
Metering Mode
Flash Compensation
White Balance
DRO/Auto HDR
Creative Style
Picture Effect (only active for JPEG-only shooting)

The Display button can not be customised and only serves to cycle through Display setups – but you can customise those, and thus what the button does for you (above, Menu to set which finder display states you wish to cycle through, ticked). The Help (?) button can also not be customised, which if you don’t want potted hints and tips makes it redundant in shooting mode, though it serves as the Trash button when reviewing images. The Playback also can’t be customised, nor can the Menu button (which can return to Last Used or Top by setting a preference), nor the top LCD illuminator button. This one is interesting because it toggles – the panel light remains on until the camera goes to sleep, or it’s pressed again to turn off.

In use, I found there was one button missing which would make a huge difference to this camera. The 12fps ultra high speed shooting mode is only accessible through the mode dial. Because of the way the camera handles bursts of frames and buffering, it would be useful to be able to shoot normally in any mode (single frame, or other continuous speed) and switch to 12fps by holding down or toggling a button (preferably holding down, say, the AF/MF lock reassigned for this purpose).

Here’s a neat touch – as long as you have a lens with no MF/AF switch on it, you can set M focus on the body selector, and pressing the AF/MF button will do autofocus for you, letting it go will lock the focus back to manual. That’s another reason to like my 16-80mm CZ on the A77 – ideal for studio products or architecture, or indeed for landscape. It does not work with the 18-55mm SAM. There is in fact a bit of an overall mess with SAM, SSM, and standard lens focus types including the assignable DMF (direct manual focus) to the AF-A mode. There are some lenses where you are warned never to use body MF setting always only to use the lens switch. What you will find is that some menu items are greyed out, and some buttons don’t work, if a mismatched combination is set.

Lens compatibility

The new 16-50mm f/2.8 is enabled for in-camera lens corrections

This leads to the general question of lenses and the A77 generation. It seems there’s some additional information chipped into some but not all lenses which enables the Lens Correction function (Vignetting, Chromatic Aberration and Distortion) for in-camera JPEGs. Raw files are unaffected, and I don’t know if this information is used to enable better panoramas but that would be a practical fringe benefit. But since the 18-55mm SAM, 55-200mm mk2 SAM, and 18-250mm (an old design relatively) are in the release firmware along with the 16-50mm SSM maybe there’s no info in the lenses themselves, and future firmware will add more.

The oddest incompatibility is the manual’s statement that Front Curtain Shutter should not be set on ON for ‘Konica Minolta’ lenses (added note – see Comments at the end of this article, some discussion of this). First of all, the description of Front Curtain Shutter is misleading. When this is set to ON, it means NO front curtain shutter – electronic gating instead. When it is off, you are using the physical Front Curtain, the blades uncover the sensor to start the exposure. The manual does make it clear that by Front Curtain Shutter Sony means No Front Curtain Shutter.

But what is a Konica Minolta lens? There are very few, nearly all were made by Tamron. Konica Minolta never even got round to rebranding the Apo G lenses, they just changed the box and the lens cap and left Minolta as the name on the lens. I have a 28-75mm Konica Minolta, a 17-35mm Konica Minolta and at one point I had an 18-200mm, and of course, the kit 18-70mm and various horrible full frame plastic lenses like the 28-100mm. I think there are 75-300mms in KM guise.

Everything else prior to Sony was Minolta because KM simply never made any, or if they did, it amounted to no more than a box label change. To confuse things, some of these Konica Minolta like the 18-70mm, 18-200mm and 75-300mm became Sony lenses without a single substantial change. And many Minolta lenses became Sony lenses while retaining a heritage right back to pre-D days or the origins of the AF system itself. The 28mm f/2.8 is the most obvious example, the 50mm f/1.4 another.

Why would an electronic front curtain produce overexposure or inconsistent exposure only with Konica Minolta lenses? Given the very fast response time (1/20th of a second) and high speed of the system (1/250th flash sync, 1/8,000th shutter) the only thing I can think of would be the speed of aperture closing action. It is also something which would be invisible in revised lenses; maybe the Sony 18-70mm kit lens actually has aperture blades which close 50 milliseconds sooner than the KM equivalent.

This would also mean earlier Minolta lenses, not just KM, might produce overexposure (aperture still not fully closed when exposure commences) or uneven exposure (aperture continues to close down during part of the electronic progressive gate-opening). The same would apply to many third party lenses.

I’m pretty sure this is why the warning is made, and that singling out Konica Minolta lenses is an error. Any one individual lens may have sluggish diaphragm, indeed a common cause of overexposure in all A-mount lenses is incomplete stop-down. So the advice should be don’t use ‘Front Curtain Shutter’ set to ON with anything except Sony A-mount lenses – or test your independent lens before use.

A warning about not setting Micro AF adjustment with third party lenses is given, as usual. This is because the makers borrow lens identity codes. The Sigma 12-24mm f/4.5-5.6 Mk1 has the same code as the Minolta/KM 28-80mm kit lens. This issue will also affect the behaviour of the Auto Lens Correction register, which in our body does not have any effect on the CZ 16-80mm for example but does correct the new 16-50mm. I would guess ‘correctable’ lenses have extra information, older and third party lens won’t. So don’t bank on this function fixing JPEGs from your ‘heritage’ of early Sony glass!

Sigma has issued a list of lenses which are known to have AF problems with the Alpha 77/65, and will upgrade them free of charge. You can read the list here: http://www.sigma-photo.co.jp/english/news/info_111014.htm. It includes the 18-250mm HSM OS, which we have. Ours does not seem to have any issues at all on our A77 with firmware 1.03. I’ve also tested the 8-16mm and 100-300mm OS, 70mm macro and 70-200mm f/2.8 HSM Macro MkII. These are not in the warning list and all seem to work well, even though they do not work reliably with the Alpha 55.

The A77 has Fast/Slow AF options and I’ve used Fast. The accuracy of the AF is much better than any previous Alpha model.

Autofocus and exposure

The 19-sensor, 11-cross AF module is not most densely populated – the A900 has 10 extra hidden ‘tracking assist’ line sensors bringing it up the same total (they are there, they just don’t have screen markings) and its central double cross sensor is technically the best type around. But having eleven cross sensors does more good in practice.

AF has a new mode, Zone. This creates three groups of sensors left centre and right which act like mini wide zones. Wide Area focus can, of course, locate widely spaced details which are concurrently in focus. Zone identifies the zone with the most focused points, then works within this area. It can use information about the change in confirmed focus within one zone to help track the subject into the next zone. It also gets the exposure right more of the time.

Because the sensor is feeding image data to an analysing computer, Face Recognition and Object Tracking can be linked to the AF. There must be some theoretical speed penalty – something must be slowed down by microseconds if you enable these functions. I can’t detect it. The only slowdown is the time you take to press the central controller button to register an subject for tracking. Smile Shutter is also possible. My subjects normally scowl so I don’t use this.

The focus point – here, centre focus spot aimed first at the family and then held using the shutter release to recompose the scene – helps determine exposure. The 1200-zone metering has correctly placed the baby’s white clothes in the value range 250 to 254 RGB.

The most reliable and accurate focusing method remains central single spot focus, or local selectable single spot. Now that all of these are cross-type, there is no compulsion to stick with the centre and recompose, but it’s a habit hard to lose. I have already observed that the metering in spot mode is 16 times more sensitive than spot metering in the 900, and I would guess that when the system biases matrix metering values to the centre focus point, there’s a related gain if not that much. There is a proper near-IR AF illuminator in the camera body – Minolta tradition lives on! Without flash, it really is possble to focus in the dark and the EVF does a very grainy but usable job as a night vision viewer too. The illuminator also enables focusing on plain surfaces as it projects a pattern.

The SLT mirror of the 77 diverts 30% of light to the AF module, but this is actually more than the old semisilvered patch and double mirror system used to let through in SLRs. The AF sensor itself may not be any more sensitive, it’s simply getting a much better image feed. This 30%, by the way, means the light reaching the sensor is reduced not by the 1/3rd to 1/2 a stop sometimes mentioned, but by .6 of a stop or nearly 2/3rds of a stop. 50% would be one stop. (See comments at the end of the article for some more precise figures on the mirror split provided by Dr Daniel Oi).

My experience so far with the camera indicates that exposure is very reliable over the entire EV range. I simply leave it on the matrix multi-zone setting. The EVF warns me if it’s going to bias too much to the focus point.

High speed shooting

This brings me to the aspect of high speed sequences. No cameras in this class has ever achieved 12fps, let alone at 24 megapixels. In theory you get 13 raw or 11 RAW+JPEG frames before the camera slows down, and it looks as if the buffer must hold about 320MB. The camera does not have a dual processor like the Alpha 900, and it does not benefit from the robust performance of fast CF cards.

Autofocus is provided in Hi drive mode, along with AE (8fps, accessed via the Drive function button, in any shooting mode). Using this shooting speed you have full control.

In Speed Priority AE mode (the 12fps setting on the mode dial) the focus is locked before frame 1 if you have the camera set to Single (S) AF, but in exchange for this, you can set both the ISO and the aperture. You can also set these if you use Manual focus.

If you set the focus mode to C (Continuous) then both AE and AF continue during shooting. You can set the ISO, but not the aperture, so the ISO is your only way control the shutter speed. Added note: the Canon 1D X has now bettered this record high speed shooting by providing 14fps. This mode in the Canon locks both AE and Focus with the first frame, locks the mirror up, and you must use Live View on the rear screen to compose the shot. For focus tracking with viewfinder, the 1D X is limited to 12fps.

12fps is very impressive. It makes a huge difference in action work. I often test sequence shooting on the local races, and I quickly found that even tracking a horse (necessary to keep it in the frame at all for more than one shot at 3fps) certain frame rates just produced two stages in its stride, repeated. The horse was galloping at 2.5 clops per second and I was shooting at 5fps. With 7fps it gets better, 8fps or 10fps still better and with 12 fps you reach the point where four different positions of the legs are recorded.

Also, it becomes possible to aim the camera at a fixed spot like a hurdle, and fire, capturing several positions of the horse before it leaves the field of view. It is not as necessary to pan with the subject every time to get more than one shot.

Animation of three hand-held frames, cropped from a Sigma 70-200mm shot taken at 70mm, showing how 12fps captures very fast action in relatively small steps. At 5fps, the second frame would have the horse leaving the right-hand edge.

In practice, you certainly get your 13 raw or 11 R+J shots at 12fps or the slower AF-capable Hi 8fps setting – or indeed at the slower 3fps rate. But you don’t get anything like the same continuous shooting capability as past models even if you knock the JPEG size right down. You’ll get around 18 Normal Small JPEGs (6 megapixels, lowest quality) at 10 to 12fps before the rate slows down to an erratic 3fps with occasional half to one second pauses. For raw files, after your 13-ish burst is up, you may get between 0.5 and 1 frame per second with occasional one to two second pauses. With an average SD card (20MB/s write) you will wait 15-20 seconds after the last shot before being able to shoot fast bursts again.

Here’s another sequence, this time as stills without the annoying animation you can’t turn off 🙂

And here, below, is a 100% crop from the original ISO 800 raw file processed using Adobe Camera Raw 6.5 (Sharpness 50, Radius 0.5, Detail 0, Masking 0; Luminance NR 25, Luminance Detail 50, same from Chroma NR)

Sharpness? The 12fps C-AF setting forced the Sigma 70-200mm to be at f/3.5, two thirds of a stop down from full aperture, but also gave a shutter speed of 1/6400th. I could have perhaps picked another detail with slightly more punch, and looking at all the shots, my prefocused point was actually about 1 metre behind the horse (if the AF refocused during this sequence, I can’t see any evidence in the images). The 8fps or Single-Shot AF 12fps settings allow control of aperture, and I know that f/5.6 would have cleaned up. Just remember you are looking at a section of an image something between 6ft and 8ft wide, it’s very easy to view a tiny clip like this as if it was just another digital image.

I tried one technique, shoot 2, 3, 4, 6 frames with brief pauses – as if catching different moments of an event, in bursts. Even though I spread the 10fps bursts over a ten second interval, by the time I had totalled 20 raw frames I was down to the single shot per second or worse situation.

To follow up, I shot a burst then allowed the buffer to write for about 8 seconds before firing again. I got seven frames at 12fps, which fits in with the card in use taking about 15 seconds to finish writing from a 13-frame burst.

For one of the horse racing tests, I shot one burst of frames and as the camera slowed down, two horses fell and two jockeys were injured, one requiring a stretcher. I was unable to get ANY pictures of the incident as it happened, and by the time the Alpha 77 was able to shoot again, the ambulance crew was on the track. Each race gave me just two chances to shoot a burst so I’m afraid that testing every single setting combination on the camera was not possible.

Panorama speed mystery

There’s something I don’t understand about the raw, file and buffer handling of the Alpha 77. Shooting panoramas – which have to start with exactly the same frame by frame 24 megapixel data readout – I counted 42 frames apparently firing at something close to the 12fps maximum, then creating a panoramic JPEG, and the finished 6.7MB JPEG file was written to card and the buffer cleared before I had time to see if the light was still on.

What exactly is happening here? How could the processor and the buffer somehow handle the throughput of the wide panorama with at least double the number of continuous burst frames I could get with even the smallest JPEG – and then do all the computing to assemble the panorama and write it to card, leaving me ready to shoot immediately?

I ask this because when shooting panoramas with the Alpha 55, my 15MB/s SanDisk Ultra II SD card failed – it was not fast enough, could not handle the data and became corrupted. Clearly panorama shooting is data intensive one way or another. But in the Alpha 77 it appears to be allocated buffer and processing power which is denied to more useful motordrive sequence shooting.

Movie shooting does not enjoy the same fast buffer clearing. Shoot any higher quality movie beyond a mere blip on the button, and you can’t fire a still frame for some seconds. With some HD-movie systems, you actually shot a still frame during the movie and lose nothing except a couple of movie frames; with others, you can end the movie by pressing the shutter and capturing a still. In yet other makes, you can shoot a still but lose two seconds during the movie. All these solutions are valuable when still shots could be important. The A77 movie function does not permit any such choice and may block all shooting by occupying the buffer to card writing process for many seconds.

And, in reverse, you can not initiate a movie while the card write light is on. I tried this with one of my horse race test subjects. I decided I would shoot the front runners going over a hurdle, get my 12fps burst, then do a few seconds of movie of the stragglers who reach the spot a few seconds later. Although I could have shot further (faltering) still frames, movie shooting was blocked out with a warning message telling me ‘Writing to Memory Card – Unable to Operate’. When raw shooting was set, this lasted many seconds, but interestingly with the small JPEG option only two or three seconds were blocked out.

After my tests of the high speed shooting functions, I conclude that to cover some sports events well you would need a pair of Alpha 77s, or the 77 and some other camera – and you would need to keep a close eye on the card writing light. As a result of the performance with my SD cards giving write speeds around 20-30MB/s I ordered a SanDisk 45MB/s Extreme Pro, and plan to get a 95MB/s card when they are available.

Added after receiving the SanDisk Extreme Pro 16GB 45MB/s card: burst shooting is not extended, using raw it varies from capturing 10 to 12 raw frames at maximum rate, sometimes with a single frame jumped (two groups of 5-6 frames) which never happens with my ordinary Transcend 20MB/s card. Buffer to card writing is reduced to around 10 seconds from around 20, but at least with this extra card speed, there is no way to extend the approximate 1 second unbroken raw shooting burst.

The Alpha 65 and 77 are the only DSLR/T cameras so far made which use the USH-1 SDXC specifiction to allow writing data at this kind of rate. They are ahead of the card game. But they need to have this capability. Anyone expecting to make full use of the high speed drive functions and best video quality of the 77 with cards like the faithful wallet full of Transcend 16GB Class 10s we have been using will be disappointed.

The dedicated Movie mode

On the mode dial of the A77 there is a movie position. This does not mean it has changed, like some Canon models, to be incapable of shooting unplanned movie clips – you can do this at the press of a button, like other Sony models. What the Movie icon means is that you gain access to manual control of ISO, shutter and aperture. As a penalty, you lose AF.

Why? That is easy to answer. The AF sensors in the 77 are rated for f/5.6 aperture use. Default movie apertures range between f/3.5 (typically set on fast lenses) and f/6.3 (well, with an f/6.3 zoom lens there is little choice). AF works best in this range. If you really want to shoot AF movies at f/2.8 on a 200mm lens, try by all means. I have tried at f/3.5 and for every clip which has a smooth focus transition, there will be another where the SSM, SAM, HSM or plain old screw drive makes a sudden shift.

So if you want to work at f/1.4, leaving focus to AF would be a disaster. Apart from making constant shifts, there’s a big chance of hunting. I worked with the 24mm f/2 SSM Carl Zeiss for a while, and this lens does not find focus easily in low light with any camera. On the A77 for video it was auto-set to between f/2.8 and f/4 in low light. Video AF happens at the actual working aperture, not wide open like still AF. Being stopped down a little improved the 24mm’s accuracy.

And if you want to work at a smaller aperture than f/6.3 – say f/16 for a deep focus effect with a superwide lens – then AF simply would not work at all. The Manual Focus restriction placed by using the Manual Movie mode is necessary despite the howls of protest it’s produced from those who don’t understand the technology involved. A side benefit of setting Movie mode on the dial is that your view through the finder is cropped correctly to the HD area before you start filming, which makes composition easier – see below.

In the Movie position on the Mode dial you might believe you can use the self-timer. The manual ticks that box. We had to check it, but although you can set the Drive state, including self-timer, doing so has no effect on Movie shooting. Nor can you shoot stills with the Mode dial in this position. Various other manual details, such as indicating flash can be usedin this mode, are also incorrect or there’s a small firmware glitch with the camera. I would expect the shutter release to be operational with the mode dial set to Movie, so that stills could be captured. It is disabled and you can’t take still shots at all if the dial is in this position. Be warned!

Not only that, but after I had pressed the Self Timer 10 second setting when in Movie mode, the LCD top display showed a single frame symbol plus the 10 from the self-timer mode, and the shutter release was disabled even after returning the mode dial to Program or other settings. The Drive mode had to be reset to get it out of this tangle.

As for the instant Movie button, it’s not in the best place – a long thumb reach for on and off actions to start and end clips and the placing tends to make me tilt or move the camera needlessly. When adjusting the viewfinder dioptre to switch from working with spectacles to working without, it’s so close to the dioptre control I push it occasionally by mistake. I would like the Movie mode to switch operation to the main shutter release OR the movie button.

It’s worth noting that picture effects (see later pages) can be applied to movies, as can all other image adjustments, and will be seen in the finder as you shoot.

But what you won’t see until the moment you press the movie button is the working HD movie area. It is a surprisingly fierce crop from the full sensor, not just a top and bottom slice to HD 16:9 format. This is required for the Steady Shot digital, pixel-shift based movie stabilization which does not move the sensor like regular SS. It reduces the 1.5X area to something like a 1.8X area, not as much ‘zoom in’ as using the 1.4X smart converter but enough to cut heads and feet off subjects you have pre-composed using the full finder. There are indicator marks on the display, that’s true, but you will find them hard to see in many conditions even if you remember to use them.

Shot with the 24mm f/2 lens – no way to move back or zoom out for the movie, but plenty of space you would think for the 16:9 HD crop.

This is what the HD movie viewfinder field switches to when the Movie button is pressed (slightly re-composed horizontally but not cropped at all). The movie stabilization need the surrounding pixels. It highly effective, both through the live viewfinder and when viewing the results, and totally silent unlike sensor-shift SS. It also does not warm the sensor assembly up as much.

A caveat to movie shooters. Select the highest quality AVCHD 2.0 formats (the camera will warn you) and you may not be able to play them, burn them to disc other than Blu-Ray, or import them into HD movie editing with programs like Apple iMovie. No doubt this will change with updates, but right now apart from Sony’s PC-only Picture Motion Browser (they have now had half a decade to port it to Mac) there are few programs which can recognise the 1080/50 or 60p 28Mbps format and even fewer which edit it. You will need to buy software to do so. On my system, Toast Titanium 11 includes Roxio HD viewer and because it is a Blu-Ray compatible disc authoring package, this was able to handle the .MTS files in all formats, and convert them to formats editable using iMovie. Roxio offers similar PC utilities.

Sony PMB is also very useful for GPS data handling, map viewing and correcting GPS data. While Adobe Bridge with the GPS Panel (download from Adobe) installed allows viewing and editing of co-ordinates, it still has no link to Google Maps, Microsoft Virtual Earth, or any other useful location display.

Sound

There is no provision for audio notes or audio only recording, which is a bit of a waste of built-in functions as this would be possible and can be useful. Audio notations attached to images are popular with travellers and journalists.

The stereo sound is not much different to the NEX or Alpha 55 despite being capable of 48kHz (better than CD) sampling. The microphone under its unusual top grille seems less prone to wind noise than most DSLRs; the wind noise reduction feature, a bass cut filter, is additionally effective. Body handling noise is present, so is lens focus noise.

The external mic socket provides 5v phantom power for popular condensor mics, and is stereo too. No provision for fixed gain is made – auto level or gain is always on. The camera needs an option to disable auto gain so that a preamp or mic with dB cut choices can be used to control a fixed sound level; better would be three levels, like Nikon; even better still a proper sound level monitor display and full control in fine steps like Canon. Without at least one of these options the Alpha 77 can not considered for semi-pro or professional live sound video work.

GPS Data

While I think that the GPS on the A77 has so far proved faster in locking and more accurate in positioning than the A55, it’s hard to quantify as I have not used both together for long enough in difficult locations. To improve your GPS, download this file:

http://control.d-imaging.sony.co.jp/GPS/assistme.dat

Create a folder on your SD card inside the PRIVATE/SONY directory and call it GPS. Copy this file into it, put the card in your camera, switch on. Go to GPS in the main menus and make sure it’s turned on, then look at the GPS ASSIST entry and you will find the assist data starts on the day you download and lasts a month. Visit the assist.dat download once a month or more often to keep your GPS working with the fastest and most accurate lockon and co-ordinates. Do not worry if you format or change cards, once in the camera the assist.dat file is copied to internal GPS memory. Your original card does not have to be present.

Sony state 15 seconds or more to acquire or change position, and variable accuracy due to GPS being a US military provision which can be subject to deliberate degrading. In this model, when no GPS signal can be detected on power up, the camera simply turns off GPS embedding (on the A55, it uses the last co-ordinate). But if you are out and about, the last position may be shown on some pictures. I don’t think I move that far in 15 seconds

.

An example of GPS map location from Media Pro and Google Maps – click on the image for a full size screen shot.

Adobe gripe – it’s long overdue for Bridge to have a GPS map function when Lightroom does. As it happens I use Media Pro for all my digital asset management. When this was Microsoft Expression Media 2 it has its own Virtual Earth window, but now it’s been taken over by Phase One, that has been replaced by auto-opening a web browser Google Earth window. I don’t really need to see maps at raw file stage, but it could help with filenames. I like my filenames to be a ‘catchline’ format – an alphanumeric string which contains a key word about the subject. That could be simple like venice2011-15.jpg or a bit more precise like guideccasangiorgiovenice2011-15.jpg.

Mouthful? Not ISO compliant? Not ancient PC friendly? Sure. But very useful indeed many years later when searching for stuff. And access to GPS map location helps me decide filenames, then later on input metadata for caption, keywords, description, and much more. With 15,000 finished images stored on my system everything which helps me identify them is valuable.

Image formats and styling

The Alpha 77 has a stack of great functions and features I will never use. That’s because they are not available if you shoot either RAW or RAW+JPEG. They include multi-shot modes (combining tonal range for HDR, or reducing noise for low light and high ISO) and in-camera post processing effects.

There are some of these JPEG-only modes I feel comfortable with. Panoramas, as an example, don’t provide a raw file and you can’t bracket exposures. You have to trust the camera despite the huge range of tones and light a wide panorama can cover. If you choose your start position well (including the brightest highlight area of importance) exposure is very reliable, and at low ISO with Fine quality, the JPEG is of a professional standard.

Standard JPEG (click images for 1000 pixel wide version)

Three-shot HDR using 3EV spread

Three-shot HDR also works well, especially at low ISO settings of 50 or 100 and in Extra Fine JPEG. The 24 megapixel file gives plenty of scope for reducing to a smaller final result. There is also a special HDR Painting mode, which processes the file with a masking effect to create what is currently a popular ‘look’. Unlike the standard range of HDR settings, this is far from being a straight image and the lack of a raw file or normal JPEG to back it up means it’s only for fun.

Over the top with HDR Painting style, High strength – it actually works best on dull, wet days with grungy subjects!

More ‘only for fun’ stuff includes soft focus, selective colour against mono (called ‘Partial Color’), toy camera, miniature effect, two monochrome looks including one which uses three exposures, ‘pop color’, posterization, retro photo, soft high key. All of these are irreversible real time post processing. You have no normal backup when shooting.

The post-processing method offered by Nikon and others, where you can apply similar effects to raw or JPEG files already stored on your memory card and create a new version, is preferable. For standard HDR shots on Sony’s current models, a normal JPEG is saved along with the three-shot HDR and that’s good. For any of the Picture Effect post-processes, even multishot, no standard result is saved – all you get is the processed file, after a wait of 10 seconds or considerably less.

Selective yellow on monochrome – but that’s the only shot I have. No raw, no standard JPEG…

You do get a pretty accurate preview of the result in the EVF. If the stop-down preview button is set to ‘Shot Preview’ mode instead of ‘Aperture Preview’, you also get a simulation of the effect of your shutter speed – so flowing water brief time exposures (up to 30 seconds) can be previewed to see exactly which shutter speed suits the water movement best. Along with exposure simulation, there should be no reason why your shot ever goes wrong.

The Auto ISO Multi-Shot mode, Multi-Frame Noise Reduction, captures six frames and creates one JPEG. The pixel alignment seems very accurate and shots at settings like ISO 3200 show an improvement in detail which would be hard to obtain even by good raw processing. It’s not so much the noise that is reduced, it’s the overall quality of the image which improves. Using the high 25,600 ISO setting which can only be accessed in this mode shows that it’s slightly inferior to a straight 16,000 ISO shot despite the six-frame synthesis.

For all these multi-shot modes, the 12fps function of the Alpha 77, SSS, and the quiet, mirrorless shutter action combine well. They are all usable without much effort or worry, hand-held. The one ‘tonal range’ adjustment which does operate in RAW+JPEG mode, though only the JPEG is changed, is the DRO or DRO+ setting which uses a single shot.

High speed shooting also benefits exposure, DRO and white balance bracketing. Early information and the use manual state that you can define the number of exposures for bracketing, and the range covered, with the Alpha 65. In fact it is limited to three shots. The Alpha 77 gives you a choice of 3 shots at +/-3EV, the same at 2EV, then 3 or 5 shots at 0.7, 0.5 or 0.3 EV intervals. It is missing the obvious 1 EV step choices and that will baffle many, especially HDR raw users who would like 5 shots at 1 EV intervals.

Flash

The Alpha 77 has a proper, threaded, high grade studio flash sync terminal as well as the usual Minolta i-type hot shoe. Like the Alpha 700 and 900 (and unlike the consumer level cameras, including the Alpha 580) it can have the HVL-F58AM or 43AM wireless control capable flash mounted on the camera to control group/channel wireless strobes with power ratio. It can also use HSS (burst flash with shutter speeds up to 1/8,000th and corresponding power attenuation). It can not officially use the HVL-F20AM as a wireless controller, but owners have found it works – with a slightly longer than normal delay in flash firing, according to Gary Friedman, who has compared it with the pop-up flash wireless control.

The flash sync Prontor-Compur coaxial connector (PC flash socket) is sealed behind a cover shared with the Remote Release socket. This cover was so tightly sealed it threateed to break a fingernail opening it the first time, a small screwdriver was needed.

The most important change for professional and enthusiast owners is the long-overdue addition of a menu item which prevents the EVF or LCD live view from showing actual exposure when Manual aperture and shutter are set.  This item is under Live View Display, and is called ‘Setting Effect’ – off or on. While this nomenclature is not exactly transparent, it describes the function well as all picture styles and creative effects normally shown in the finder are also bypassed. The important thing for studio flash users is that you can set 1/125 at f/16 with modelling lights, and see a normal finder view not a black hole. You still must remember to set white balance to Flash or Daylight, otherwise the camera will set it from the modelling light K.

It is best to use one of the three Memory registers (accessible through Menu screen after turning the Mode dial to MR, Memory Recall or Register) to store a manual exposure, fixed WB, low ISO, Setting Effect OFF preset for studio work. Then you can return to any other setting and get your accurate exposure and ‘look’ preview back again.

The internal pop-up flash (GN12) has the usual range of first, second curtain, fill-in, off, auto options; TTL Pre-Flash, ADI, and also manual power control down to 1/16th which can be useful for triggering slave flashes if you don’t have a cable or a wireless trigger (and Minolta shoe adaptor). Because the body is weatherproofed, the flash shoe cover is a softer plastic type which seals tightly. Don’t lose this shoe cover or swap it for one of your others.

And the rest

By the time I’ve written this single review article, it will be one-third the length of the complete camera guide books we used to do for Hove twenty years ago. The Alpha 77 has so much more to discuss.

You will be concerned about high ISO quality, diffraction, resolution, having good enough lenses. I would question whether the new 16-50mm, used wide open, is a ‘good enough’ lens – let alone the 18-55mm SAM also being offered as a kit lens. Just don’t worry. Whatever your existing lenses are capable of doing, the 24 megapixel sensor will give you more of it. Let’s say your favourite lens is really only good up to 12 megapixels. It will be just as good if you use the 12 megapixel Medium size JPEG option on the Alpha 77, and if you do that, the 1.4X Smart Teleconverter function will also deliver a 12 megapixel drawn from the centre of the field only – so most likely just as good.

Rather too distant heron, shot using the 2X Smart Converter for JPEGs (this is actually a clip from a raw file processed in aCR to match). ISO 3200, 70-300mm SSM G lens. Click image for 1000 pixel version

Click image for 1000 pixel 100% size clip from ACR processed version (my density choice)

Click image for Capture One Pro 100% clip from raw (ditto)

Click image for in-camera processed (JPEG Fine, Low level of NR) 100% clip (camera’s density)

I am now shooting with auto ISO set to go from 100 to 3200 instead of 1600, I have started using Medium and Small JPEGs with DRO+ to ensure exposure correction for events type shots, I’ve tried all the lenses I have and the only thought is that I need to stick around f/8 to f/11 for safety. Balancing extra depth of field with a hint of diffraction loss. I’m using the manual focus ‘peaking’ function to check the accuracy of my AF (this shows a coloured line on correctly focused details, when the AF/MF button is pressed in). I am not so worried about low light, high ISO as I first thought. It’s actually as good as the 16 megapixel sensor when needed, and when it’s not, the extra resolution repays careful low ISO technique.

The new tilt, hinge, flip, swivel and cartwheel rear screen is just great for the few times I need to use it. The EVF may consume more power (470 images versus 530 per battery official rating) than the big rear screen but I no longer need to switch between the two for menu and function operations. Because of the new design, all positions found on other cameras from hanging-under to almost flat on top (R-1 style) are possible except facing forwards and positioned to the side. There are firmware or orientation sensor errors, as the imager can appear upside down in more than twisted position. The hinge design makes a vertical grip possible and also allows a wider range of tripods or quickmount plates.

The A77 has all the focus and AE hold and lock, slow sync, focus point shift, exposure over-ride and other key functions I need. It claims to be weatherproof, and having nearly broken that thumnbnail off opening the flash sync cover  I do believe the seal is tight. The card slot door is not so reassuring and I see no trace of any proper sealing, not even a labyrinth design.

I am baffled by Sony’s indecision about ON/OFF switch design, the camera labelling is the reverse of the Alpha 55/33/35 or 580/560 etc, though the action is the same. The direction is the reverse of the NEX-5. But there is one consistency, to turn any camera on the movement is always from left to right – whether Alpha 100, 700, 900 and whether the switch is rotary or a slider. Maybe this is the rule they stick to.

You can not configure the directionality of the two control wheels, as you can with Nikon, and for some reason I have always tried to open or close the aperture by taking the wrong directione. That is because the wheel directions go against the old Minolta protocol that turning the aperture ring to the right opens up, turn to the left stops down.

Like the Alpha 700, the Alpha 77 has magnesium alloy body shell combined with other metal and plastic components. It has the proper strap-lug fixed into the mag alloy casting, like the 700 and 900. This lug and triangle-ring design, as opposed to the slot-type strap fixing of the lesser camera bodies, is always a clue that the structure is based on a good solid metal skeleton. The overall design and balance of the Alpha 77 are as good as any Alpha I’ve used. There are hints of the 700 and also some memories of the Dynax 7xi present in the sculpturing of the body. To those who say it looks a bit like a Canon, yes, it’s true that Canon design has caught up with 1990s Minolta style in the last couple of years…

Conclusion

From the initial press meeting with Sony, where cameras were prototypes and the images were not allowed to be shown, I decided that if I could work for a year with the Alpha 55 and have no problems then the Alpha 77 was a safe investment. The viewfinder is a pleasure to use, though EVFs differ from optical screens in one important respect, that the eye can not compensate for small errors in the dioptre setting. With an OVF like the Alpha 900, I can set the dioptre midway between what’s needed for my sight with and without glasses, and get along fine with either. That can not be done with the EVF and it demands a precise dioptre setting for each. I have found it more comfortable to use without specs, so they spend too much time perched on my head, hanging from my collar or stuffed into a pocket.

It will be another year before I know just how wise the decision to go with EVF SLT models has been. And maybe another ten thousand words.

– David KiIpatrick

Please read the comments for some notes on corrections, which I will continue to make.

 

 

 

 

 

Smoke and Mirrors – an idea for Sony

With the latest Alpha 77, Sony has introduced SLT version II, the new upgraded ‘Translucent’ mirror. This is in an attempt to reduce the ghosting effects created by having an angled mirror between the lens and sensor, the image forming rays passing through a semi-silvered (pellicle) surface, through a thickness of polymer film, and then to the sensor. Having tried it out (update, September 8th) we can confirm that it works. You honestly would never know there was anything between the lens and the sensor.

But Sony, like all makers, has continued to think in terms of SLR design and the old world of film negatives and slides, where the image always had to be a certain way up on the film, or it would end up being printed and projected reversed left to right.

In the past a simple reflex mirror for a TLR viewing screen – like the Rolleiflex – did a useful job of turning an inverted image the right way up for viewing. On film at the back of the camera, the image was both inverted and left-to-right. But that did not matter, as the film was viewed through its reverse (back) side to see or print the image.

Somehow, this old design has been continued to new cameras – but today we use digital sensors. The upside-down or left-to-rightness of the image does not matter as we view the image on a screen or using an EVF. No matter how the image ends up on the sensor, it can always be the right way up and the right way round for us to view.

So, Sony, when you make you that full-frame Alpha 99 camera change the entire approach. Position the SLT mirror so it reflects the image sideways, upways or downways! And put the SENSOR where it receives the image from the REFLECTED lightpath. Make the mirror reflect 70% of the light and transmit 30%, instead of the other way round.

There will be no double imaging, no flare patches, no ghosting and not even an extra substrate or layer for the image forming rays to pass through, if the sensor receives the reflected image not the transmitted one. The AF sensor, in the meantime, can be positioned in direct line to the lens where the imaging sensor has been in the past, measuring the image through the SLT mirror.

This arrangement (©David Kilpatrick, Friday morning, August 26th 2011, scrambled eggs with smoked salmon for breakfast) will in a single stroke remove all the complaints about image degradation as the mirror will provide a perfect image.

But – would it? Slight lack of plane perfection in the SLT mirror used to transmit the image-forming light, and reflect the AF-measuring light, does not have much effect on the image. Anything less than an optically perfect mirror would fail to create a quality image. It would be like sticking a cheap filter on your lens, or worse. And of course it would never fit into a normally shaped camera body with a full frame sensor and shutter.

Solid solution

Ah – the AF sensor, unlike the imaging sensor, does not need cleaning to remove dust spots. So the mirror would not have to be movable. Actually, it would not have to be a pellicle mirror. It could be a lovely big lump of pure glass prism moulded straight on to the AF module itself, even including the condensor-collimator lenses of the AF system. It could be solid glass all the way from mirror surface to AF receptor, and the 45° front face could be to the same optical perfection as the best Sony G lens. Or even the best Carl Zeiss lens. Hell, it could be a Carl Zeiss prism and then the camera could have the CZ logo!

Diagram above: light blue = solid glass optical prism with 45 degree semisilvered front face; the two white indents at the right hand side indicate AF modules set into the prism rear face. Pink = shutter (optional, ideal system would have electronic shutter only). Dark blue = sensor. Green = top mounted waist level viewing screen, also articulated. A secondary eye-level EVF would or could be used. Design ©DK with a bit of nicked Sony lens cross-section.

Design? Rollei 6000 all the way! A professional, Hasselbox-shaped thingy to cradle in your hand. With a rotating 24 x 36mm sensor too, so that you change the format aspect by pressing a button not maneouvring the camera body. A 3 inch square OLED on the top like a giant waist-level finder, showing the image vertically or horizontally as you turn the sensor. A waist-level viewing hood for a giant magnified view. Maybe even a monster top prism for the biggest EVF you could imagine!

Mor realistically, an eye-level EVF in addition to a top plate OLED or LCD panel designed to be hinged up/rotated/twisted – rather like the LCD of the Sony Cyber-Shot DCS R-1, one of the best ever ‘waist level finder’ options fitted to a digital camera to date. In fact something like s giant updated R-1 full framer might do well.

As for the image sensor, that could be in the well of the camera (mirror aiming down) but maybe having it in the top of the camera, below the viewing screen (mirror facing up) would help gravity reduce the dust issue.

The point is – it does not matter where the image sensor is placed, it does not have be where the film once was. It does not matter whether the image reaching it is inverted or reflected, as unlike film it does not have an emulsion side or a film-base side, the electronic viewfinder is independent of the orientation of the optical image.

Future ‘SLT’ EVF cameras – especially a future Alpha 900 replacement – do not need even to resemble today’s DSLRs and can be made better by abandoning ideas fixed in designers’ minds since the era of film cameras.

– DK

Technical note: angled partial mirrors, whether prism surface or semi silvered, create polarisation effects, colour shifts and a varying efficiency of reflection depending on the angle of incidence of the ray. This is one barrier to the use of pellicle mirror design for a full-frame model, as the back focus or telecentricity of lenses relative to the format would mean a greater range of incident angles across the mirror surface. Sony appears to have overcome any such problems in the existing APS-C SLT design, and the slightly forward tilt of the mirror (not a true 45°) helps in this respect. I propose the above design in full awareness of related optical and technical issues. I’m not assuming they do not exist – they would need solving.

Sony UK’s live Q&A webcam sesssion

A recording – advance for half an hour or so to miss the lengthy setting-up process – is available of the web Q&A which Paul Genge of Sony handled tonight for a UK and worldwide audience of over 450 web-browsers.

Here are some resumé details and comments made during watching the webcast:

Paul failed to understand the question about the angle of view for video. Some existing models (14 megapixel NEX for example) crop the horizontal angle of view for HD1080, they don’t just take slices off the top and bottom. The question whether the 24.3 megapixel sensor HD mode uses the full horizontal angle like the 16 megapixel Alpha 55 remains unanswered.

Flash sync socket combined with auto gain for manual live view in place of manual mode exposure simulation does allow studio work with the A77.

Question about the SLT and light loss is not answered clearly – the correct answer is that additional gain is applied, so in effect, the mirror does result in higher noise levels. But this has not proved to be noticeable in the A55.

Paul implies that Sony has not yet designed the next generation of full frame cameras – but later on, confirms that there definitely will be one. No-one asked about the megapixel possibilities…

No audio input level control (auto gain, 5v mic phantom power via 3.5mm stereo jack). Not much was made of this but it is the killer feature of the Canon 60D and 600D, enabling these cameras to film amplified music gigs with clean sound despite the clipping and overdrive potential of small condensors in high sound pressure. Manual volume setting is very important as music gigs are a big, big use of HD video.

Black 18-55mm kit lens will be exclusive to the NEX-7.

Firmware upgrade for NEX-3, NEX-5 and NEX-C3 will allow use of the LA-EA2.

A77 and A65 use electronic sensor based video stabilisation, not physical piezo actuation and movement of the sensor on the carriage, to reduce sensor overheating but provide IS. This may answer the question about the video HD crop, as this type of stabilisation can only be effective if the sensor is substantially larger than the image area. If this stabilisation is proposed for stills, it could result in variable crops of the image area. But no-one was asking questions at this level.

A77 MR Memory Recall – three custom setups saved, as with current Canon models. but not as convenient as the Alpha 900 with its three physical dial memory positions. Better than pure screen-menu chosen memory settings though.

Paul is now calling NEX ‘necks’ not ‘any eggs’. Good, that’s how we have always said it!

24.3 megapixel sensor creates 27.6MB raw file size, 38MB when also shooting a typical fine JPEG.

A77 movie exposure modes (P, A, S, M) can only be used if the camera is set to Manual focus; it is possible to re-autofocus during a take, but the brightness and settings appear to change.

ISO in finder, but OLED EVF can be customised to show what functions or settings you want to display, independently of what you see on the rear LCD.

September 24-25th, event at Sony HQ Weybridge, Surrey – www.sony-alpha-live.co.uk – Saturday or Sunday, team of advocate photographers, book space – £77 for first 30 users, £150 for rest. Includes free goodie, bag, lunch, transfer from rail station. Meet Paul Genge, his team, and the Alpha advocate photographers. Other companies involved will include Manfrotto, G-Tec hard drives.

(We asked later to attend this, but Press are excluded – it is strictly for paying delegates and aimed only at owners).

Question about Sigma lens compatibility – praised Sigma as an honourable Japanese company, which generally fixes the lenses as needed.

12-bit depth raw.

Over 450 users.

Did not mention GPS (we have subsequently had some complaints at PCA over the omission of GPS from the NEX-7 – ‘the ideal travel camera but no GPS is a deal-breaker’).

New community pages on sony.co.uk

Sony affirms NEX future – and SLT path for Alpha

Sony today announced upgrades and a road map which will keep NEX E-system adopters more than happy – especially those who have added NEX to their Alpha outfit. Diehard Alpha purists will be less delighted.
At the photokina press conference, a two-year rollout of additional NEX lenses was announced including a fast Carl Zeiss wide-angle, a premium quality G-series standard zoom, a macro lens, a portrait lens, a wide-angle zoom, and a prime telephoto.
Firmware upgrades for NEX-3 and NEX-5 to enable Aperture presetting for video, and AF operation of SAM and SSM Alpha mount lenses with the Sony adaptor, were promised for October with a similar upgrade for the NEX VG-10 in November. The NEX 3 and 5 upgrades will allow assignable functions for the buttons, including direct access to ISO setting or HDR (amongst other choices).
Sony went out of their way – as on their stand – to highlight the explosion of 3rd party adaptors making almost every lens in existence usable with the NEX body’s 18mm register. They announced they were already working with partners to enable production of NEX adaptors and even NEX compatible lenses, but could not reveal anything yet. The opening up of the system to 3rd party makers would, said Toru Katsumoto, help revive photography itself.
With NEX now accounting for half of all mirrorless/compact interchangeable lens sector sales, they were confident of its future.
The bad news, for many, will be that the Alpha 700 replacement – optimistically shown with a vertical grip, 500mm f/4 G SSM lens and a new flash – will have a fixed Translucent mirror just like the A33 and A55. Paul Genge of Sony UK confirmed to us after the presentation that it will not have a flip-up mode to allow shooting without this extra sheet of glass in place.
As tests of the A33 and A55 have shown clearly, the Translucent mirror creates visible bright-edge ghosting or secondary imaging in the vertical direction. For many users, this will be a no-go option; they will look at the Pentax K-5 and the Nikon D7000 and see a ‘pure’ optical path from lens to sensor (although we all know the cover glass assembly of the sensor removes this possibility).
Perhaps the real A700 of tomorrow will be the Sigma SD-1 – the 1.5X factor, beautifully designed, 15 megapixel (true!) Foveon machine claimed as ever to match a much larger real pixel count – 48 megapixels. Well, Sigma need not make such claims. 15 megapixels is enough. It was enough with Bayer pixels. 15 real Foven RGB coincident location pixels will be one amazing camera.
Today was a wonderful day. Summer temperatures. Everyone was sitting round outside in the open spaces at photokina and it was like a big barbecue party with all the wurst-stalls grilling away. The sunniest photokina we’ve ever been to. And there is an amazing level of optimism here about trade and the market. We had a recession – unless someone screws it up, we are in for a boom again. There is so much fantastic stuff coming and China is both the market and the innovator in so many ways.
– D&SK, reporting from outside the Restauration K A Pütz Brauhaus, with 2nd small Kölsch
Additional notes: I filmed the entire conference on my NEX-5, which overheated losing 1 minute midway (pull out the LCD assembly and have the screen away from the body – this stops it overheating so fast, my mistake). But I need my big iMac and fast broadband to edit this and put up several YouTube sections, I can not do so from photokina pressroom or hotel wifi. It will be posted next week.
The image shown of the A7XX (the ‘Advanced Alpha’) is the same mag-alloy body (strap lugs give this away) ‘750’ that was seen at PMA, it’s actually like a slightly rounded Pentax K-5 in size and heft from the description and screen views. Because it will use Translucent mirror technology, you must not assume outright that this means no optical finder. It may use the semi-silvered mirror at 45 degrees, and have a new AF method, quite unlike the A33/A55 – and it could have a really good glass prism finder. But the mirror, like the old Canon Pellix and RT models, would be fixed. We simply do not know but the shape and size indicates it’s not necessarily an SLT in the A33/55 mould. I could devise an AF detector capable of reading from a focus screen (just as the human eye does). Anyone with basic optronics/optics knowledge can see that there are many potential ways to achieve AF, and they do not preclude fitting an optical focusing screen. There are also ways of achieving superior on-sensor contrast detection AF. – DK

Four new Alphas – and two 'translucent'

It’s a funny word to use, because the mirrors involved are transparent and not translucent (which implies passing light but not in an image-forming manner). Translucent means semi-opaque, letting light through in the way that an opal perspex sheet or Kodatrace foil does. Transparent means something you can see through.
But now, thanks to the wonder of changing language, translucent is also going to have to mean transparent, or semi-transparent. Pellicle, semi-silvered, whatever term you wish to use.

Unfortunately, for this writer the misuse of the word translucent stands as one of the biggest schoolboy howlers ever imposed on the entire world by the ignorance of a corporation. It’s such a glaring error I can hardly bring myself to use the term – others, like Dave Etchells, have happily assimilated the new meaning into their technical lexicon. And as the video above shows, they’ve made it into a trademark, a permanent part of the future of this technology.
Wiki, and pretty well every dictionary ever published, disagree with Sony’s imaginative use of a word from which they have now removed its exact meaning:
Wikipedia: “Transparent materials are clear, while translucent ones cannot be seen through clearly.”
Merriam-Webster:

trans·lu·cent/transˈlo͞osnt/

Adjective: (of a substance) Allowing light, but not detailed images, to pass through; semitransparent.
(the semi bit of semitransparent cited here seems to mean semi-detailed, vaguely delineated – not slightly darker; otherwise the primary definition of the word is diluted).
There has been some heated argument on dPreview forums about this post of mine (my view is shared by many). No-one has made the point that words evolve to have useful exact meanings. Transparent and translucent are words which may once have shared a common poetic meaning in 18th century descriptive writing, but whose meanings were refined with the progress of science and technology. This process in the course of over 200 years resulted in a useful distinction between the meanings of transparent and translucent. Sony’s commercial misuse of the word Translucent is damaging to the English language and to the scientific and technical lexicon; it predisposes future confusion about the meaning of the words.
It is also a fait accompli; there is no turning back, since Sony’s corporate stance is much like that of Mrs Thatcher; no u-turns and never admit to be being wrong. They have also no doubt invested hundreds of thousands of dollars in the consultancy involved, and the registration of the term as a trademark, the creation of branding artwork.
They could have branded the mirror TransLumina® or, more usefully, just called it a transflecting mirror – transmitting-reflecting. That term is already used to describe the sort of mirrors used in ‘Big Brother’ with cameras behind them.



As to whether it’s a true pellicle mirror (a thin stretched film of vacuum coated Mylar or a similar polymer) no-one seems to be clear. It moves out of the way to allow sensor cleaning but could be relatively fragile. It certainly does not need to move to allow 10fps (Alpha 55) or 7fps (Alpha 33) continuous shooting. Sensor dust is often created within the camera by wear and tear on the shutter mechanism, so access for cleaning is essential and the mirror can not be designed to seal the sensor chamber. The Alpha models still have a shutter, that’s the next thing we shall see eliminated. That old rumour of the 15fps silent shooting Alpha DSLR seems to be more than a rumour; we are almost there.


For many users, the critical advantage of all four new Sony models will be HD Video with sensor-based in body image stabilisation. This will enable all kinds of lenses from macro to ultrawide or soft focus, manual adaptations and Minolta AF legacy glass to be used for video with confidence.
Welcome back the circular polariser, unlike mirrorless ILC cameras these new models will not allow the use of linear polarisers without AF efficiency reductions, but exposure should be unaffected as the sensor itself provides the metering with 1200 zones.
This will be one of the tests reviewers need to carry out on the new pellicle mirror Sony Alpha 33 and 55 models – to confront them with not only polarising filters, but conditions in which light is naturally polarised. How will they render sky gradations or reflections off water?
Two further Alpha models are being released, which are essentially updates for the 500/550 – the Alpha 580 which will hit the shops before the winter buying season, adding 16.2 megapixels and a 15-zone AF module, HD 1080p video and (non-video) Contrast Detect AF with all Alpha mount lenses. The 560 will not arrive until some time in 2011, using a 14.2 megapixel sensor.
Versatile features
More of a landmark than a benchmark, the inclusion of 10fps continuous shooting with active phase detect AF and 16.2 megapixel file size in the Alpha 55 is unprecedented and possibly unforeseen by competitors, in this class of sub-$1000 consumer DSLR (let’s continue to use the term, since they are clothed as DSLRs). The dual format card drive supports the 30Mb/s transfer rate of the latest Class 10 SDHC cards and Sony’s fastest MemoryStick Pro Duo generation. The HD video also has a reasonable 17mbps  bitrate.
The new technology has been well documented before the launch, but the fine detail of the new cameras is now clearer. The Alpha 55 is some markets will incorporate GPS geo-tagging for stills and videos (we wait to see whether raw files are tagged, and how accurate this is – the accessory Sony geo-tagging system available to date has only permitted JPEG tagging, and has not been accurate enough to know which street in a town the picture was taken in).

Rumours that the 33 and 55 bodies would be SSM/SAM only, with no internal focus drive, were unfounded as Sony states clearly that both are compatible with ‘the full range’ of over 30 Alpha lenses (indeed, the product shots of the 33 and 55 alone show the 18-200mm SAL DT lens fitted). The 55/33 1080i/60p (1080p in AVCHD camera archive format) video claims ‘smooth, precise’ phase detect auto focus during video shooting, but makes no reference to this being limited to in-lens motor lenses. Therefore we can assume it works with in-body AF drive lenses as well, and you just have to edit the soundtrack.
The new ISO 25,600 mode does not imply a radical sensor change as it is only available using Multi-Shot Noise Reduction, which requires a burst of 6 frames at the 10fps/7fps native maximum speed of the camera, and can not save raw files. The ISO range of the sensors is 100 to 12,800. Is this range quoted as absolute, or after accounting for the semi-silvered mirror light losses? If it’s the range before allowing for the mirror, then the 14.2 megapixel sensor of the Alpha 33 may be more like the Nikon 3100’s sensor than the NEX (ISO 200-12,800) is.
Thom Hogan has shown pixel dimensions and size data which support Nikon’s claim to have an entirely different sensor fab line of their own, compared to the A550/NEX sensor. But how about compared to the A33/560 sensor?
The 55’s new 16.2 megapixel CMOS will probably appear in the forthcoming Alpha 700 successor, which it is believed will form the main Sony exhibit at photokina (Cologne, September 21st-27th). Both models have a new 15-zone AF sensor with three cross sensors, but not f/2.8 sensors – all are designed to operate at f/5.6 virtual aperture. However, there is a hidden clue that the cross sensors may be f/3.5 capable, as the high-speed shooting modes with continuous AF set f/3.5 by default on any lens capable of this (if the lens is, say, only f/5.6 then the largest aperture is always set). Setting f/3.5 implies that this confers an advantage in focus sensitivity over f/5.6, f/4 or any other particular aperture – and that f/3.2, f/2.8 or wider would bring no benefit. That points to some of the sensors having an f/3.5 virtual aperture.
The new cameras are known as SLTs – Single Lens Translucent – instead of SLR. See my intro. Did they have no English speaking staff on their team? I’m sure there is a German word which describes their mirror correctly. I’d rather have the right German word than the wrong English one. Ah well, as the bloke leaning on the pub bar says, durchsprung vor technik
Confusing aspects – Auto HDR is said to be available in P/A/S/M modes. I guess in M mode it must leave the aperture alone and change just the shutter speed. Regular bracketing is still limited to a disappointing 3 exposures at 0.7 EV intervals, maximum.
But you’ll love the direct D-Range button which gives access to D-Range and HDR options directly, and the direct Finder/Screen button which toggles between using the very high resolution EVF with its ‘virtual 1.1X’ 100% view of the subject – effective visual scale, larger than the Alpha 700 and larger than any previous Alpha digital model except the Alpha 900 and 850. That’s one of the benefits of the EVF, a relatively tiny display is viewed through a high magnification ocular and ends up with a ‘window’ on the world which beats the tiny tunnel vision of optical finders. Technically it is very similar to the last EVF produced by Konica Minolta on the Dimage A200, with the benefit of five years’ further development. It has the same 60Hz refresh rate and visually almost raster-free RGB.


Where the A550 and its earlier stablemates vary slightly around a viewfinder with an effective 0.50X scale (relative to a full frame 100% view using a 50mm lens), the A55 and A33 provide an effective 0.73X and that’s impressive. The ocular is set well back (remember the Konica Minolta A2, and the Sony Cybershot DSC R-1?) because it is a telescope design. This also gives it a very narrow range of possible eye positions, a common feature of EVFs. The eyepoint is close, and you must position your eye precisely.
The rear screen uses the same type of (Schott?) reinforced glass with (3M?) resin gel adhesive as Canon’s 7D – this totally seals to the LCD module itself eliminating air gaps, and improves contrast. It is a technology first seen in the 7D and becoming standard across the industry though the NEX has shown Sony to have the best implementation so far. It is scratch proof, by the way, and it can be cracked by impact like any other screen.
The tilt-swivel action is borrowed directly from the Nikon D5000. In fact, it’s so identical in articulation it even included the amazingly silly front facing mode where the screen is obscured by your tripod, hanging under the camera and preventing it from being placed on a flat surface for self-portraits or videos. But it has the same benefit as the Nikon, the screen can be flipped to face the camera and protected completely while you use the EVF.
Functions familiar from the NEX including Sweep Panorama and Sweep 3D Panorama are built-in and accessed from the main mode dial, which also provides physical settings for all the main modes. Depth of field preview is restored – with the usual button – because is can now actually work. It was always useless in real terms on optical viewfinder cameras, as the focusing screen never represented wide apertures correctly.
Now, with an EVF, for the first time ever an eye-level Alpha gives absolutely perfect and precise previewing of depth of field and bokeh effects whatever aperture you are working at – even at f/1.4, which was never possible and still isn’t with the A850 or A900 for that matter (which is why their Preview mode is useful).
You can also preview the exact image appearance. By pressing the AE lock button, the auto gain of the EVF or rear screen are turned off and replaced by an exposure-compensated view. So if you dial in -1 EV (using the adjacent dedicated button), and change the WB, and use a different picture style with more saturation and contrast just pressing AE-Lock will immediately preview your image with these adjustments applied. And you can enlarge in the usual two steps to check auto or manual focus.
The finder and screen also have a Nikon-style two axis spirit level (flight simulator horizon) display to help you get your horizontals straight and your verticals parallel. It can be activated on either, and does not have to appear on both simultaneously.
For movie makers, the binaural stereo microphones are a great move. Even on the NEX, the two small top aperture mics give excellent stereo. The 33/55 mics are placed either side of the ‘prism’ housing, rather like the ears on your head. This will give the stereo image created by these cameras a really natural quality. Natural, that is, to a pygmy marmoset monkey… but still, I will wager, the best stereo image of any DSLR/HybriD. And Sony provide a stereo 3.5mm mic jack socket, though without any manual control of gain levels.

I’m sure we will have to buy the A780 to get that. Click the picture above for a big version. Who says Sony does not have a range to match Nikon or Canon, whether or lenses or of cameras? From the left, the cameras show the current range before we even see the magnesium-bodied Alpha 700 replacement arrive. A900, A850, A580, A560, A55, A33, A390, A290.
– David Kilpatrick
Read Sony Press releases and full technical data:
Alpha 33 and 55 Press Release
Alpha 560 and 580 Press Release