Sony A7RII versus Nikon D850 – noise

There’s a lot of noise about the Nikon D850 right now but few direct comparisons. One problem I have with some early reports is that new D850 owners are most likely to be existing D810 or perhaps D750 or D5 owners. Any comparisons are therefore being made with earlier Nikon sensors.

Recently a Nikon ambassador whom I respect greatly placed some .NEF raw files into a Dropbox for fellow professionals to examine. Since this article effectively criticises Nikon, I will not reproduce anything recognisable. I naturally grabbed the files and processed them with my usual care in Adobe Camera Raw. This includes making adjustments to the Sharpness and Noise Reduction settings depending on the ISO used. My standard with Sony, Nikon and most other files is to reduce the radius for sharpening to the minimum (0.5) leaving the basic settings of 25 for sharpness and 25 for detail untouched, with no masking. I also don’t touch the Colour Noise controls at all, and usually only adjust the first Luminance control leaving Luminance Contrast and Luminance Detail at default. This first Luminance control tends to set to zero for ISO 100 (or the minimum for a given camera), 10 to 15 around 400 to 800, 25 at 1000 to 2000, 30 to 35 at 2500 to 4000, 50 at 6400 and never above this level.

Continue reading »

Sony A7R II review by David Kilpatrick

Sony’s A7R II has a unique position in the mirrorless ILC world, creating the largest image files at over 42 megapixels from an in-body five axis stabilised sensor with exceptional performance given by backside illuminated CMOS.

My reviews in print of the Sony A7R II have now appeared, in the British Journal of Photography, f2 Cameracraft and Master Photography magazines. All three make slightly different points, and reflect growing experience of the camera which I bought from WEX as one of the first despatched on July 28th. The UK best body-only price then fell from their £2,695 to just over £2,000 from one main Sony dealer (at an event promotion) in under three months.

Despite finding bargain deals or importing directly, since the introduction of the A99 only three years ago I have lost about £3,500 keeping up with Sony full frame camera bodies. I’ve also spent around £2,000 buying other Sony models like the NEX-6, RX100, RX100 MkIII, RX10, and A6000 to cover the shortcomings of every different full frame model – and £2,000 or more updating my lenses.

So why invest in the A7R II when experience tells me the Sony system loses value faster than any other, yet so often falls short of performing as required?

One body for all lenses

The A7R II almost matches medium format digital, and gives great results with rangefinder (Leica) fit wide-angles. It has enabled me to add a 12mm f/5.6 Voigtländer Ultra Wide-Heliar to my kit for sharp, tint and vignette free 120° architectural and creative work. I write about lenses, and with current and future adaptors, this body lets me focus and make test shots with all lenses from Canon, Nikon, Pentax, Leica and many others. Click the Heliar image below for a link to a full size (slightly cropped and straightened from 42 megapixels) file. It’s actually shot at f/11 though the pBase data says f/5.6, that how the camera’s Lens Correction app works.

Caerlaverock Castle

There’s no lens made which disagrees with the 42 megapixel sensor as far as I can tell. My kit includes the 12mm mentioned above, the 16-35mm f/4 Carl Zeiss OSS, the 24-240mm f/3.5-6.3 Sony OSS, the 28mm f/2 Sony OSS FE (look out for individual reviews shortly); a 40mm Canon f/2.8 STM pancake, a 24mm Samyang tilt-shift, 85mm Sony SAM f/2.8, Sigma 70-300mm OS and a whole bunch of interesting older stuff used on adaptors.

With the Lens Correction App configured for SS with each manual lens, the very high resolution of the A7R II sensor allows a stable view for precision magnified focus well beyond the ability of any AF method or reliance on focus peaking alone. Doing this at working aperture ensures no focus shift on stop down. The results show me quickly which lenses are excellent performers without needing an optical bench or test charts (give me a single LED light and a darkened room, and I can find out what I need to know about any lens very quickly).

driedflowers-A7RII-web

Most Sony and Sony Carl Zeiss zooms do yield good sharp images on 42 megapixels but it’s easy to exceed their best by fitting something like my 1970-ish SMC Takumar 50mm macro (used for the shot above), or even my Russian 50mm f/2 tilt-adapted Zenitar. I found the 28-70mm f/3.5-5.6 OSS which was fine on A7 II inadequate for critical quality on the A7R II and after tests concluded the 24-240mm was the best option to replace it. To learn why FE/E mount zooms and OSS lenses are never likely to blow away fixed focal length unstabilised types like the Zeiss Loxia or adapted classic RF and SLR optics, wait for my 24-240mm review.

Having said size matters, I downsize many of my final images to as small as 9 megapixels. I don’t need 42 megapixels (7952 x 5304) for every image and for some it’s ridiculous. I’m still selling thousands of stock images* taken with DSLRs from six megapixels up. So for general ‘field’ use, most lenses are more than OK, as I can reduce the file size right down 3600 x 2400 pixels when noise needs cutting, depth of field is a problem, or general sharpness is poor.

One sensor for all image shapes and sizes

With the A7R II, unlike the A7R, all the APS-C E-mount lenses work properly (they never have their OSS forcibly disabled). The auto cropped image is 5168 x 3448, 17.8 megapixels, and that’s a perfectly useful size for all personal and most professional work. The 0.78X EVF is, of course, completely filled to exactly the same visual quality as when a full frame lens is used – the user experience with an APS-C lens is identical to that with full frame.

As with downsizing or lens based cropping, I can crop full frame captures right down to less than a quarter of the A7R II image and have a file acceptable to Alamy for stock library use, or to a client directly for almost any reasonable editorial use. That same crop can go full page in a wedding album, or make a fine A3/16×12 print. It’s like using 120 rollfilm again, you can find pictures within pictures.

lemurs-fullframe

A 240mm shot clearly not close enough…

lemurs-240mmf9-iso400-crop

This is a 3600 x 2400 crop. That is, an image large enough for full page publication or a 12 x 18″ photo/inkjet print (click to view full size)

With many lenses which don’t cover full frame, a 24 x 24mm crop is perfect. The Sigma prime lens ART trio (19mm, 30mm and 60mm f/2.8 AF without stabilisation) all do well on this basis. I had a 16 megapixel square format digital back on Hasselblad V and the square format is a favourite. Unlike Olympus, who offer a 1:1 ratio capture, Sony only includes 3:2 (35mm shape) and 16:9 (HD widescreen) – I’d love them to add a proper 1:1 square image seen in the EVF and on screen, a perfect 28 megapixel crop.

The high resolution FF image also means there’s less need to stitch panoramas or use shift lenses. Canon’s 17mm f/4 TS-E tilt shift lens was introduced in 2009 when their full frame 12 megapixel 5D has just been upgraded to the 21 megapixel 5D MkII. On the A7R II, using its maximum 12mm shift reveals serious loss of outer field sharpness even at apertures like f/10, f/11 and f/13 which are optimum on other ways. It’s not a sensor cover glass problem as the Canon 5DS R revealed exactly the same weakness. Downsize the image to 12 megapixels, which the lens was probably first designed for, at everything looks sharp. But here’s where 42 megapixels can pay off – I just need to use a 12mm Voigtlander or a Sigma 12-24mm, crop a 14 x 21mm area from any part of the 24 x 36mm frame, and I have a 14 megapixel image allowing even more effective ‘shift’ than the Canon. And I can, of course, use the Canon via an adaptor if needed.

The same kind of strong cropping works for telephoto wildlife shots (300mm lens, better than 500mm on 14 megapixels) and for macro work (1:1 on full frame, 2.2:1 at 14 megapixels). You need to remember all the time that traditional depth of field calculations just don’t work well with sensors of 36 megapixels and over. When you view a full size A7R II image at 100% on a non-Retina iMac or HP 27″ monitor, you are looking at part of a six foot wide ‘print’. Depth of field tables, still used today, were based on viewing a 10 x 8″ print from a similar distance! This problem is reduced by higher resolution screens but sometimes, you simply need a smaller image size.

Canon 5DS/R (in proportion with earlier models) have useful M-RAW and S-RAW formats, allowing the cameras to become full frame 28 or 12 megapixels with a single menu change. This function is missing from Sony raw files and would be a great firmware enhancement, if it was possible.

Reasons to buy the A7R II

SONY DSC

Having used two other A7 series bodies, and started the transition to the FE lens series with some mix of adapted glass on the way, why didn’t I stick with the far more realistic and practical A7 II, or the A7R which was paid for and at 36 megapixels just as useful a large file size?

  • Internally or externally recorded 4K video though not a commercial offering from my side might well be a request from a future client. I don’t make videos though many years ago I did made 16mm films and many 35mm slide based dual and multi projector AV programs. However, I know many still photographers who have found sufficiently high-end clients for video to invest the time. I wouldn’t touch any video production, even a brief 20-second ad clip, for under four figures. It’s fun to experiment with until any serious use emerges. Also, excellent Super-35 crop format video.jamesgem-1371-web
  • Completely silent operation when needed – though not compatible with any kind of flash, the fully electronic shutter is an option for wedding ceremonies and I’ve used that function already. It is also useful for shooting stills when someone is making a video, or during quiet concerts, in meetings, or when you simply don’t want the sound of a shutter to be heard. When silent is not needed, electronic first curtain (not provided on the A7R) improves shutter lag time and cuts vibration
    .SONY DSC
  • It’s also got a 500,000 actuation life shutter built to more than pro specification and a superior 0.78X electronic viewfinder, a slightly improved body flange for the lens mount (now common to all the II models, tighter and more precise than the original machining), no light leaks. And the mode dial is improved with a locking button, the Multi Function Accessory shoe is further improved in contact reliability, the ocular is T* coated and gives better eye relief.SONY DSC
  • It will perform well with all kinds of lenses and the 399-point wide area phase detection AF array built in to the sensor functions partly, or completely, with more native Sony and converted Canon lenses than ever before. It betters the A7R and A7 II in this respect, though I sold the Canon 85mm f/1.8 USM above as it didn’t work with the II having worked well on the A7R. Metabones have now fixed this, but my adaptor is a cheaper non-programmable type… you get what you pay for!
    Canon5DS-6400-web
    This is what you get from the Canon 5DS at ISO 6400, default, for shadow detail and noise (click to enlarge a 100% view of this section from a much larger file)


    Compare the separation of the black ribbon, and the shadow detail in general, from a similar shot ISO 6400 A7R II file, using the same lens and settings (click to view enlarged).

  • The back-illuminated CMOS sensor has a dynamic range – and a contrast curve or gamma function through controlled A to D conversion – which provides an ideal raw file for subsequent adjustment at lower ISO settings. Here, the difference seen above between the Canon 51MP sensor and the Sony 42MP is striking. The Sony images may often look softer and lack punch, but they reveal two stops more detail in the tones close to deep shadow. It’s probably been designed this way to allow s-Log gamma settings for professional video, producing flat neutral results ideal for grading to match from take to take. This happens to be very flattering to skin tones and it’s no surprise the A7R II is rivalling Fuji’s X-Trans sensor amongst fans of the flesh.jamesgem-1685-web
  • The same sensor has awesome practical performance in low light without sacrificing resolution, and noise levels which allow surprisingly high ISO settings for critical subjects like wildlife where fur and feather textures are easily damaged by noise (or noise reduction). Properly processed from raw, or shot as JPEG in camera, ISO 800 can be used as an everyday setting and 1600 will not even harm landscape detail. Up to 6400 an effectively noise-free full size image can be extracted, and at 12,800 to 25,600 some downscaling is all that’s needed to clean up. Admittedly, it’s never going to match the 12 megapixel A7S or A7S II at 51,200 and has a limit at 102,400 rather than marching on to an insane 409,600 EI as that body does.SONY DSC
  • Compared to buying an A7 II, remember that with the A7R II you get two Sony batteries and an external charger (about £150 in official value) as well as the ability to operate the camera from any 5v 1.5A USB source (not just to charge the battery internally, but to shoot using USB power)
    .SONY DSC

    You also get a neat tether-trap locking cage which screws into the camera side and can secure your USB and HDMI cables against accidental disconnection or strain on the connectors.
  • Final reason – going beyond the A7R II specification does not seem to offer further compelling advantages. It doesn’t have any major flaws or shortcomings except perhaps the single card slot and some doubts about the durability of the body, weatherproofing, and the quality of the lens mount (see below). I’m not in need of more than 5fps and 22 continuous raws before slowing down, and if I am the smaller Sony models like the A6000 and my RX10 do some pretty neat extra high speed sequences. So, for the first time since the sale of my A900 to get the A99, I feel I have a long-term camera no matter what Sony does in six months to make it hopelessly out of date.

What’s could be wrong?

First up, the poorly specified and designed lens mount and low precision body/lens relationship. Where Minolta A, Fuji X, Pentax, Leica and nearly all good makes secure the body and lens bayonet mounts using six screws, the E-mount uses only four even for the top end bodies which may have to support lenses approaching 1 kilo in weight. The four-screw fitting creates two axes of potential tilt restrained only by diametrically opposed screws, six-screw design is better but actually a five screw design beats both as you can’t draw a diameter across any two screws and create a tilt axis.

sonyjune1526

The E/FE lens-body system is built round a concept of achieving final accuracy in alignment and focus without needing precision in every component. The nominal 18mm mount to sensor register doesn’t have to be perfect (and seems to vary by at least ±0.1mm). All Sony E and FE mount lenses compensate for variations and use free-floating magnetic focus often combined with floating OSS – they don’t have fixed infinity stops. Just as the bodies don’t have to be all that precise, the lenses themselves don’t need to be. As long as both work with the sensor to AF perfectly, the overall system is self-correcting.

You soon find out the limits of E-mount precision when buying adaptors for older manual lenses or modern Canon EF lenses. I’m sure Zeiss makes due allowance in the design of manual focus Loxia lenses, and Voigtlander has specifically allowed the new E-mount range planned for 2016 (10mm, 12mm and 15mm) to focus past infinity because they are aware of the variable register of the system. I have measured many adaptors and the only safe decision for the engineer is to fall short of the target register. Some very expensive adaptors turn out to be 0.3mm thicker than others for the same mount (I’ve found this in Leica M, Canon FD and Canon EF adaptors). The lenses being adapted often have a fixed infinity stop and are designed to hit this precisely. Combine a 0.1mm ‘plus thickness’ Sony body with a 0.2mm plus adaptor, and your manual wide angle lens won’t focus on infinity.

So, one overall issue is that despite the high cost, the Sony FE/A7 series range of bodies and lenses lacks the precision engineering of past systems and it’s designed that way. When you find one side of your pictures always seems soft with wide-angle, wide zoom or very fast lenses you have encountered the limitations of Sony precision and quality control.

Secondly, the A7R II has such large files and a slow overworked processor relative to those files and the massive task of running a high resolution, high frequency EVF and many clever software functions. Any kind of systematic ‘chimping’ to check each shot after taking may leave you frustrated. Depending on your choice of card and some unknown spin of the CPU’s internal dice, you will sometimes encounter long file writing times and a brief lockout from playback.

Install the 14-bit (in 16-bit container) raw uncompressed format introduced in October 2015 through a firmware update, and the situation may improve. With Firmware V2.0 I’ve seen typical write to card times halved but identical shots could take varying times and the worst case remains close to 10 seconds for the light to go off on a single shot. Most of time it’s clearing about 1 second after 2 second auto review, and disabling auto review has no apparent effect on this, or the time the camera takes to respond to a fresh shutter actuation.

Secret solutions

Since you’ve been patient, and listened to why the A7 system in general has a few failings, here’s how to get the best optical performance and general response from it.

SEL70200G_A-1200

First of all, for the best optical performance use lenses where OSS can be disabled but in-body SS allowed to operate. The internal 5-axis sensor based stabilisation of the A7II/RII/SII is awesome. In-lens OSS is impressive but by its design will always lose you some resolution, often more towards one side or corner of the image than centrally. Amended paragraph, see comments: To see how good your stabilised lens really is, turn off stabilisation and shoot something using flash or at a high shutter speed.

But… if you turn off Steady Shot or OSS on the A7R II, you disable it in the body and the lens. You can not turn it off for the lens, but keep it working in the body. Only the 90mm f/2.8 Sony G OSS Macro, the 70-200mm f/4 Sony G OSS (above) and the 28-135mm f/4 Sony G PZ OSS offer the on-lens switch. So if you want stabilisation, you can’t choose to have it provided by the body with these lenses. You can do so with Canon, Sigma and Tamron lenses used on a Canon EF adaptor – their IS, OS or VC will operate normally when the SS in the body is disabled. In fact you must never use these lenses with both methods turned on together, or the result will be unsharp. This is a problem we first noticed with the Olympus system, where their lens and body stabilisation do not communicate and it’s possible to us none, just body, just lens or ruin shots by turning on both together. The Sony body used with third party lenses does allow this; used with Sony lenses, it prevents it.

The A7R II will switch between internal SS, lens OSS and a combination depending on settings. But it won’t tell you what it is doing, which makes this intelligent function something of a handicap. As a rule, if you can lock the camera down (tripod) or use a very fast exposure (studio flash, shutter speed 4X the focal length of the lens) shooting with no stabilisation at all will offer the best results.

sonyjune1527

Secondly, don’t use ‘AF With Shutter’ all the time. It’s convenient sometimes, but every time you take first pressure on the shutter, your E-mount AF lens will initialise a short routine involving focus position recalibration followed by AF. It costs you a variable extra lag before the shutter fires, maybe 1/15th to as long as 1/4 second. Instead, turn this off and AF will default to the centre button of the rear controller (you can change this assignment). You then use this to AF for each change of subject, composition or distance but if nothing’s changed you do not touch it and you do not re-AF. You save battery life, and you eliminate the whole shutter-button-AF delay cycle. You can now capture pictures, using electronic first curtain shutter or silent mode, within 1/20s of pressing the shutter.

Thirdly, for action shots prefer stops close to full aperture on E-mount lenses for the same reason – the aperture closing action involves a delay you can clearly identify and it’s longer with apertures like f/16. But for maximum reaction speed, use a purely manual lens. The camera knows there’s no aperture to be closed so it misses out that stage. It knows there’s no AF. You can get down to a mere 1/50s shutter lag, faster than most photographers can think. If you are used to older DSLRs which typically fire the shutter between 1/15s and 1/8s after you have pressed the button, you’ll anticipate and fire too early for action shots. Beware the LA-EA adaptors for A-mount lenses as you can’t turn off the aperture lever actuation. These adaptors will always add a delay even if you fit a manual lens.

I’m not going to delve into how you use focus peaking, magnification, setting the slowest shutter speed to be used by the Auto ISO function and so on. You can find out about this from countless videos and blogs, not all of which feature grandmothers, sucking and eggs. Nor will I recommend JPEG noise reduction and image settings in camera, since I don’t use JPEGs. Remember that your picture style and adjustments, like extra sharpening or contrast, will be reflected in the view you see through the EVF and on-screen. They will affect focus peaking, the histogram and what the image looks like when you use magnified manual focus, too. My tip is ‘stay neutral’ for the best EVF experience and ability to judge and control your results, especially if shooting raw. Camera Standard – boring but it won’t fool you into making adjustments which are not needed.

smailhomsony16-16-p-h-srgb-web

A 16mm landscape with careful focus checking, and only just enough depth of field even at f/16 if the end result is going to be a 1m wide print

Read the manual, think about all the functions of the camera, assign your custom buttons, set your parameters. My set-up includes (routinely) Auto ISO 200-1600 because within that range the A7R II files have low noise and good textural sharpness and there’s no great benefit in dropping to 100; AWB; 1/250th slowest shutter speed because the world moves and I’m very happy with 1/250th at ISO 800 rather than 1/125 at ISO 400 for nearly all my walkabout shots; AdobeRGB because I need that but actually sRGB is better matched to the EVF and rear screen, and will give you a more accurate histogram; no JPEGs because I don’t need them; Airplane Mode on; compressed raw unless there’s a really good reason; AF-S and Centre point focus; no face recognition, no smile shutter, no tracking, nothing clever with AF; single shot; generally Aperture Priority but sometimes P, M or very rarely S; Date Format file folders; SS on; electronic first curtain; setting effect on; finder and screen at default brightness and colour; grid lines 3 x 3; focus peaking low, yellow; lens correction enabled; 2 secs review, or none.

– David Kilpatrick, all images except front and rear views of A7R II body and 70-200mm lens are ©David Kilpatrick/Icon Publications Ltd; please do not link directly to images or copy

* You need thousands on offer to sell dozens…

 

 

Sony Alpha 7R – the Swiss Army Knife camera

I guess it’s time to publish another field test review of the Alpha 7R despite rarely having used the camera in anger, or in any state other than anger. It arrived in late November and caught me at a time when I was not going anywhere or doing anything, nothing was happening and the weather was just plain ordinary. We didn’t have floods, or snow, or anything else like the rest of the country. It also came with a set of problems to be solved some of which turned out to frustrate any affordable solution.

I started writing this page in February 2014. It may give you some idea of my issues with the whole current Sony system that I’ve taken almost until May to publish it. Additions have been made on December 2nd 2014.

SONY DSC

When you’ve got a wonderful new tool to work with, it doesn’t help to have no work to do which requires that tool. This really is the Swiss Army Knife camera, a strapline I used on the first issue of the new-look f2 Freelance Photographer magazine which I took back into ownership at the end of January. The A7R has the potential to fit in my pocket and replace every single other camera I own, to use all the lenses I have bought for all other systems and formats, and to remove stones from horses’ hooves.

SONY DSC

But, and here’s the problem, it also replaces nothing at all as well as it could. There are maybe no more than half a dozen reasons why, but they are critical reasons and any one of these reasons will limit the use of the A7R.

  • No in-body stabilisation and not all lenses are stabilised
  • No electronic first curtain means the shutter cycle is noisy and causes vibration see later comments
  • The sensor design prevents optimum use of rangefinder type lenses under 35mm focal length
  • No native full frame wide-angle lens under 24mm is likely to be available before September 2014
  • Any Sony FE-mount lens with a performance matched to the sensor is going to cost double its true value
  • No on-board GPS and (to date) no multi-function shoe GPS module to add
  • Single card slot only and consumer size lith-ion battery
  • Very slow start-up and wake up from sleep especially when not using Program, Manual or intelligent fully auto modes
  • Slow optimal AF/AE performance continuous shooting
  • Slow laminar shutter blade transit speed and flash synchronisation limit
  • Firmware compatibility problems with some existing E-mount OSS lenses
  • No provision for IPTC copyright information entry
  • Custom lens app can be used with manual adapted lenses but does not embed metadata in EXIF
  • User memory settings don’t cover functions from some menus
  • Apps are charged at additional cost for functions which would reasonably be free or included in a camera body with a price-tag of £1,800
  • No battery charger is supplied and default charging method is by micro USB cable
  • The rear LCD screen can only be tilted and is not reversible to face the body
  • The EVF even at its brightest is not up to tropical or desert viewing conditions
  • Auto switching EVF to rear screen is unreliable
  • As I have now found after five months’ use, not as durable as it looks (I have repaired the worn metal showing through the sharp edges on the ‘prism’ and body with a black Sharpie pen, but I’m tempted to use a guitar fret polishing sheet to make all the sharp edges into bright silver… just rub that thin black coating off!)

In case you’re thinking this is a completely unfair list of negative points to start a review with, well, you may be right. It’s here to make up for the usual lists of star features which *end* reviews. I’m also going to need to explain all these points. Here, to balance the negatives, are the positives.

  • The highest resolution full-frame sensor (24 x 36mm) currently made
  • The smallest full-frame system camera body
  • No moving mirror, no SLT mirror, and no optical low-pass (anti-aliasing) filter
  • 18mm lens mount register allows the use with adaptors of all current and past lenses from all systems designed to cover 24 x 36mm except those which used fixed rear assemblies and front groups
  • Custom lens app allows corrections for any lens, while built-in function auto corrects E and FE mount lenses
  • WiFi and Nearfield Connection transfer file to mobile devices or other hosts with automatic small JPEG creation even when full size JPEG or RAW is the selected shooting format
  • Sony PlayMemories Mobile Apps downloadable to camera and devices add functions such as remote control and intervalometer, lens corrections, sensor shading and colour shift compensation
  • The shutter is a professional specification speeded to 1/8,000th with motorized actuation
  • The body is reasonably rugged, very light magnesium with some composite surface panels and is sealed against everyday dust and moisture ingress
  • Although you can’t hear any sound, it has an Olympus-style ultrasonic vibration dust removal process and it is stunningly effective – no big buzz, no vibrational you can feel, but it really works
  • A full set of buttons can be customised for functions, and there are three adjustment controllers plus a dedicated exposure compensation dial
  • The electronic viewfinder with 2.3 million pixels and a 0.70X virtual view is only beaten by Fuji’s X-T1
  • Triggered or manual magnified manual focus allows exceptional focusing accuracy when needed
  • The high cost of Sony dedicated lenses is offset by the quality of many low-cost, older manual lenses and the option of two adaptors for Sony A-mount lenses, SLT mirror type or mirrorless
  • The interface allows manual selection of most functions, including APS-C format crop or using full frame with non-FF lenses, movie audio gain, finder/screen exposure simulation, and lens corrections

This last point may seem a bit vague but it’s actually what makes the A7R usable at all in many circumstances. The APS-C crop on/off has saved the camera from having zero real wide-angle choice during its first three months of release, as our December 2013 article on the use of the Sony E 10-18mm lens showed.

Although electronic viewfinder cameras are not ideal for studio work, the high resolution of the A7R makes it an alternative to medium format for the highest quality. It can be set to ISO 50 or 100, with 14-bit raw files using a compression method which is comparable to Nikon’s lossless option. If ‘Setting Effect Off’ is selected, the EVF or screen will always show a bright auto white balanced image allowing modelling lights to be used for composing and focusing even when the actual shot will be taken by flash with a fixed preset WB. The professional or advanced user will want to have all the settings for such work stored as a custom memory preset, but Sony puts the ‘Setting Effect’ outside the saved functions. This is most frustrating as getting to it requires menu-diving.

The same applies to stabilisation, which is a function of the lenses not the camera. It is turned on or off through a menu setting or by assigning a Custom button for direct access, making occasional tripod work need an excursion into the menus before and after, unless you are to end up with OSS enabled or disabled inappropriately. The E/FE lenses have no OSS switch, the body has no switch, and there’s no one-press shortcut. Sony’s decision to omit M/AF and OSS on-off switches from the FE lenses makes the system just that little bit harder to work with. Buy a Canon or Nikon and even the cheapest lens has a stabilisation switch you can use easily every time you mount the camera on a tripod, work with flash, or use a fast shutter speed and want the optimum lens performance (achieved, almost invariably, with stabilisation off).

SONY DSC

No in-body stabilisation is going to handle this anyway – luck, flash, a tripod or a very fast shutter speed provide the answers

Working speed

How much does ANY of this matter, if you simply fit the appropriate kit lens or prime, and just get out and use the camera? Not a great deal if you use the camera like a point-and-shoot and your objective is a small print or posting on Facebook. Given the remarks I’ve seen on-line from people buying an A7R with a view to catching their ‘toddler running around’, plenty of new owners fall into this category. They are lucky because no matter what camera they buy, from a £50 supermarket offer to a Canon EOS 1DX, they will be happy with the results and only criticise them when the family pet outpaces the autofocus in the ideal photographic conditions of their living room.

The main issue which will hit any user of the A7R is its overall operating response and speed. Acquiring focus, by contrast detection, normally seems to take around 1/4 second with an FE or E lens, but can take half to one second in low light or with a low contrast subject. It can also fail but confirm positive occasionally, and this is a little frustrating as we are not used to getting defocused snaps today. Even one fail in a hundred is a surprise. If you try the LA-EA3 adaptor, which provides a mirror-free light path and supports AF with SAM and SSM lenses, half to one second is normal in good light. You may find it worth disabling the ‘AF with shutter’ option and using only the AF button to set the focus, so the shutter release does not keep resetting it with each shot. However, after doing this I found it more than inconvenient NOT to have the familiar AF on half-pressure.

The shutter cycle

Having acquired focus, you complete the shutter release action. The A7R then executes a pre-exposure shutter action which involves closing the shutter with a movement of both blinds. This takes 250ms, or one-quarter of a second. That is longer than the mirror lift timing of a DSLR. After the exposure is made (a minimum period of about 6ms) there is short blackout dwell and the shutter re-opens to restore live view. The complete cycle is between 375 and 385ms as timed using audio and video recording and analysis.

This is not so very much worse overall than the Alpha 99 full frame SLT used with mechanical first curtain, but more of the cycle happens before the exposure, creating a surprisingly long shutter release lag. The A99, like the A77 and NEX-7, NEX-6, A6000 and indeed most other new Sony models including the A7, can use Electronic First Curtain. This means no mechanical action happens before the exposure at all. By the time you see any blackout or hear any noise, the image has already been captured, silently; the second shutter curtain closes to end the exposure and allow electronic readout. The shutter lag with an Alpha 99 or A7 in this mode is 20ms, or 1/50th. The shutter lag with the A7R can not be reduced to less than 1/4 in single shot mode.

This is also why the regular continuous shooting offers only 1.5fps, with AF and AE supported for each individual frame and 14-bit raw data. If you set Speed Priority mode, you can get between 4 and 5fps at the most with the exposure locked but AF active – however, you don’t get a real time viewfinder display, and you also get 12-bit recording instead of 14. This lowers JPEG quality in-camera as well as the headroom and dynamic range of the raw file. You’ll only get this performance by using the best SD cards. Some which claim 90-95Mbps speed only write are half or less, and are quoting their read speed.

The A7R will often remain in a card-writing state for several seconds (as long as 16 seconds if a raw sequence has been shot and buffering is queuing the images). Playback or review is not always possible without a brief wait. Since turning off auto review (which is not subject to this wait) greatly improves EVF performance for rapid fire shooting, you may have no clear idea of your shots until well after they are captured.

The simple fact is that where many competitors including Sony’s own A7 have fast responses, the A7R has an operating speed closer to a 1970s film SLR with ‘auto winder’ (the slow alternative to a motor drive), or being more charitable, to a Mamiya 645 with a power winder. It’s essentially medium format operating speed. This is in contrast to the Nikon D800/E, which offers the same file quality without a speed penalty.

Sensor shading and lenses

The A7R sensor microlens and coating structure produces not only a strong magenta-purple shading towards the frame ends with short rear focus wide angle rangefinder lenses, it also throws up a yellow-orange discolouration at the top of the (horizontal) frame. It shows some degree of this effect with nearly all lenses under 40mm focal length made for Leica M, screw, Contax G or similar mounts.

A month after releasing the camera, Sony issued a PlayMemories App which can be loaded up and invoked to record and re-use manually adjusted corrections for named lenses. These include distortion (barrel or pincushion), vignetting, and colour shading. The app does not allow the creation of a reference image or mapping mask. You can do this for Lightroom (shading only, saved as data) or Capture One Pro (shading and colour, dust and defects saved as an image). Consequently it actually won’t correct properly as it ignores the yellow-orange patch. Its limits are insufficient to correct full fisheye to normal (as found in the onboard correction which Nikon use for their 10.5mm lens) or handle typical shading from lenses like the Voigtlander 12mm, 15mm and 21mm.

sensorshading21mmCSf8a7r

This is typical of a non-retrofocus wide angle shading map produced from the A7R. The slightly magenta vignetting can be cured easily. The piss-yellow patch can not and it’s there, to one degree or another, with more lenses than you would imagine.

A different aspect of the sensor construction produces smearing. I noticed that this was minimal with the 15mm Voigtlander and strong with the 21mm. It seems to depend on the rear group geometry relative to the sensor. I ended up selling both these lenses.

Since then, I have given up on the idea of a super-compact Leica style outfit though I still have a 40mm f/1.4 Voigtlander and an 85mm f/4 Zeiss. Sony’s FE lenses are not very small and not all that attractive in specification. They do little more than return me to the kind of lens choices I had thirty years with the launch of the Minolta AF system – a slight step backwards at the time, losing the 17mm f/4 option, 24mm VFC, 35mm VFC Shift, Varisoft and many other unique bits of glass. I’m using a bunch of vintage Pentax, Minolta, Canon and other lenses in the 17mm to 85mm range. They don’t suffer from sensor shading or smearing problems and have generally proved far better than modern zooms.

My gripe with these solutions is that even if I enter a lens identity in the App, my images show no focal length data in the EXIF info, and certainly no aperture data. At the end of a long day, I have not made notes on every change of lenses. I have no idea what lens or settings may have produced a good or bad result. What I need is for every lens to be a properly dedicated FE mount one whether AF or manual focus. And I don’t want to pay Carl Zeiss a thousand pounds to get a sharp result from the type of lens and aperture specification which has been easy to make to an outstanding performance level, at modest cost, for the last half-century.

There are three lenses made by Sigma – 19mm, 30mm and 60mm f/2.8 designs in E-mount – which prove it is possible to make low cost, lightweight lenses which deliver results almost beyond criticism. Just making the direct translation of these lenses to 28mm, 45mm and 90mm f/2.8 for (say) 50% extra cost would give the A7R exactly the kind of glass it needed from the launch day. Sony’s Carl Zeiss 35mm f/2.8 and 55mm f/1.8 may be wonderful in their own right but they appeal to me as much as 35mm f/2.8 lenses and 55mm f/1.8 lenses did back in the 1970s. Not at all. They are the focal lengths and apertures you used to find on twin-lens film compacts and they’re what you still find in the scruffiest old bag of 1960s worn-out SLR kit at a junk sale. They are what my father’s Pentax kit had (plus the inevitable 135mm).

Fuji’s launch of the X-series with a fast 28mm pancake equivalent (18mm f/2), very fast 50mm equivalent (35mm f/1.4), and good 90mm equivalent macro (60mm f/2.4) paid off well and they followed up with a 14mm f/2.8 (21mm equivalent) and pro portrait 56mm f/1.2. Though not cheap, these lenses are all affordable and have been supplemented by further excellent kit, tele and wide-angle zooms. What the A7/R needs most is a direct counterpart to this Fuji system and it simply doesn’t have it.

As for the long end, I see almost no point in buying any lens made for the FE mount longer than something like 100mm. The 70-200mm f/4 may be attractive, but it’s forever limited to the FE mount while being as long as a regular Alpha lens. Had Sony made a clever two-part SSM lens for FE and Alpha, with a detachable rear tube like a dedicated LA-EA3, they would have had a winner. Instead they have the lens which Alpha A-mount owners have been waiting for – pressing for ever since the digital system arrived – made in the new mirrorless mount only. After seeing the final prices of the CZ 24-70mm f/4 and the Sony 70-200mm f/4 G, I’ve bought an LE-EA4 Alpha SLT adaptor as well as an LE-EA3 mirror-free adaptor.

But longer lenses are still much better on the Alpha mount, with its sensor based stabilisation and the larger bodies with true phase detection AF ideally suited to the wildlife, action, news and sports for which lenses over 200mm are destined. You can add an LA-EA4 SLT type adaptor to the A7/R, but these are still full-frame cameras one of which (the A7) has extremely low resolution for tele work compared to the ultimate telephoto capture machine, the neglected Alpha 77 (or its lesser spec 24 megapixel siblings).

From my point of view I’ve got an amazing camera body with a few limitations, but a menagerie of odd lenses all with even greater limitations or lack of connectivity. If someone came out with a Canon FD lens adaptor with a chip able to tell the camera I was using a 20mm and what aperture was set, that would be great.

What does work is any LA-EA adaptor with Alpha lenses. You get all the EXIF data, and aperture control from the body. What you don’t get is the smooth focusing of a manual lens, or contrast detect AF, though you do have AF calibration to fix the inevitable inaccuracy of phase detect systems. It’s just a pity the 20mm Minolta/Sony AF design isn’t as good as the 1980s Canon last version manual focus FDn.

Timing and shake

The A7R shutter is a full size mechanism. A shutter like this running at 1/8,000th maximum speed should be achieving flash synchronisation at 1/250th. The fact that this camera is restricted to 1/160th shows that the transit speed of the shutter blinds is slower than normal. There must be a reason, and the discovery (by me, and others, despite vehement denials in some quarters) that a shock-induced form of camera shake happens could be it. Sony has also disabled OSS support for many E-mount lenses. I believe this is connected to the typical shake pattern in the hands of the average user. Update: because it occurs less with unstabilised lenses, for example my 70-210mm f/4 Minolta AF used on LA-EA4 shows none of the typical patterns, I now think this is not a ‘shutter shock’ or ‘user shake’ issue but is due either to mistimed communication between the camera and most stabilised lenes, or more likely, to a brief loss of the power needed to maintain moving lens groups or elements in position whether stabilisation is active or not. A need to moderate the drain on the battery is indicated by the slow transit of the curtains (slow motor speed to operate the shutter). Otherwise the A7R would surely have had a full speed 1/8000th shutter with X at 1/250th.

I made recordings using video, audio and motion sensing methods and observed the typical results from repeated exposures with different lenses. I found that shutter speeds from 1/30th to 1/160th could be affected by a shake or double image which occurs 1/250th after the shutter has opened, looking like a reflected or transmitted shock. At speeds longer than 1/60th this jolt occupies less than a quarter of the overall exposure and is not so clearly visible as a double image. It can look worse at 1/160th than 1/80th, because at 1/160th about half the exposure can be in one position and half with the image shifted a tiny degree. A distinct double image is often shown and it’s always in the vertical direction when the camera is held horizontally.

2870-70f5p6-handheld-OSSon

FE 28-70mm handheld 1/80th, OSS switched on (100% detail click to enlarge). Pre-update firmware. It’s very hard to be sure, but I think the April firmware update has made the 28-70mm (originally NOT recommended for the A7R or sold with the body) perform better.

2870-70f5p6-handheld-OSSoff

FE 28-70mm handheld 1/80th, OSS switched off.

70300sigOS-70f5-handheld-OSon

Sigma 70-300mm OS switched on, on LA-EA3 adaptor. One problem with using any non-Sony lenses is that firmware updates have no effect on them at all. Sony don’t make a stabilised lens going as long as 300mm, yet.

70300sigOS-70f5-handheld-OSoff

Sigma 70-300mm OS switched off. All images at 70mm (many tests made, these are accurate representations of the results and tend to show that stabilisation is likely to produce no benefit).

Since some stabilised lenses including my Tamron 18-200mm Di III VC also produced this distinctive double exposure, I believe that Sony’s disabling of OSS in the 55-210mm E lens for example was done because their engineers identified the problem before the camera went on sale. I also think it can be fixed by firmware updates to Sony E lenses, but probably not for others. Update: they did not update the new black 55-210mm OSS. I think it just imposes too much battery load without an entirely redesigned OSS mechanism, or perhaps a combination of OSS and focus. Fuji has overcome this problem using very carefully balance triple linear motors in their new large lens for the X-system, the 50-140mm f/2.8 – it’s a stabilised, fast focusing lens with minimum power consumption.

In response to those who say oh, it’s a super-high resolution camera, your technique needs to be (bla bla bla!) it’s actually slightly lower resolution than my NEX-5n and far lower than my Alpha 77 or the NEX-7 I no longer have. It’s also lower than the A3000 I owned briefly, and the NEX-6 I have used as a second camera since early March. 36 megapixels full frame is 15 megapixels APS-C and that’s a lower resolution than any E-mount camera made except the original NEX-5 and NEX-3 14 megapixel bodies. I can enable mechanical first shutter curtain on any other NEX or Alpha SLT body and never see the same ‘jolted exposure’ effect with the same lenses. I can also shoot with our Alpha 700, 900 and 580 bodies and never see this shake fingerprint despite their mirror mechanism and mechanical first curtain combined.

Of course I may get shake with disabled or absent stabilisation, hand-held, with almost any digital body. I use many different cameras through the year and sometimes I get very poor stabilisation, as when using certain Nikon lenses with the earlier VR zooms on their 24 megapixel DX format bodies. This shake is random and variable, and reflects my own instability, body sway, wind chill and so on. It’s not one type of shake visible too often in shots which should not normally be affected.

Reviewers have been incredibly cautious to observe this effect. I don’t know why. I’d spotted it within a few hours of trying the camera out. Others have been fast to defend the A7R and suggest that you just need to avoid that critical shutter speed range of 1/60th-1/160th. If this was not such an extremely useful speed range that would be fine. It’s actually the precise range you most want to be perfectly stabilised and least want to have to avoid. It’s also favoured by Sony when program mode and auto ISO are used.

One way to minimise this shake seems to be to use manual focus, mechanical lenses and to favour short focal lengths. The A7R never feels or handles better than when you’ve got a rangefinder lens in the range from 12mm to 28mm fitted. It becomes like the Leica that never was, the eye-level camera which doesn’t need a separate viewfinder to handle a 12mm, 15mm, 18mm, 21mm or 24mm lens. Leica may have a good rear screen to help with this issue now but no EVF. So the next point has been a big issue for buyers.

For the latest firmware updates, and new Apps and software, see:

http://www.sony.co.uk/support/en/product/ILCE-7R

And for the rest…

While I do miss the dual card slots of most of the Alpha cameras I’m using, I know the NEX and E-mount models have never had this, and with a 32GB card installed I have adapted to using the USB cable to read off new images and let the A7R charge. I do not miss the separate battery charger as I have one, and spare batteries. Nearly all the time, the camera is kept fully charged by its time spent overnight attached to the Mac. Since my RX100, RX10 and NEX-6 all work the same way using the same cable life has been simplified.

My favourite designs remain the A55, A77 and A99 all of which have had GPS on board and rear screens which enable self-filming for video demonstrations, or folding away to face the camera (how I normaly use EVF cameras now). The shared battery across the A55, A7R, NEX and A3000 models and RX10 makes it likely I might travel using a combination of these. I don’t have much use yet for the WiFi functions but I understand their importance to others, and they will really come in useful for remote camera operation in future. That can include skypole or kite work, or having a camera tripod mounted 10 metres away from the main shooting position for a different viewpoint of an event, operated from a phone or tablet.

kerelanchurch-web

GPS identified this as a church at Mailadumpara on the highway to Munnar – the 10-18mm lens used on full frame enabled this uncropped 36 megapixel shot at 14mm, f/11 (the shading is due to natural sky polarisation and the vignetting of the lens which I have not corrected).

I found a solution to my GPS problems in the form of a £40 igotU device from Maplin. It’s tiny (I am tempted to put a hot shoe mount on it but so far have just popped it in my shirt pocket). Free igotU2gpx file reading and low-cost PhotoLinker (buggy and unreliable in the extreme with 36 megapixel raw files) let me write GPS data into full day shoots on all cameras used. It’s not as accurate as built-in GPS and the process is tedious; the GPS data also exists in sidecar files until MediaPro is used to embed it into finished JPEGs. I’ll still buy the GPS module for the multi function shoe just as soon as Sony release it.

Top quality files

The appeal for me of the A7R is the sheer quality of the image. Even at ISO 3200, it is completely acceptable when processed carefully with Adobe software from raw. The JPEGs are mediocre with the exception of multi-shot modes and I don’t use them except for panoramas and night shots. The raw file has been criticised but compared directly with competitors, I find it has what I need – excellent highlight recovery from normal exposure levels, very low noise across a wide range of ISO, an ISO 50 setting ideal for studio lit subjects, and extreme pixel level sharpness.

Lomography Petzval lens

The Lomography Petzval lens used on the A7R with Nikon adaptor. This reproduction lens from an 1840s design is a wonderful tool for portraits.

RTK-silverfex-faded-petzval

Richard Kilpatrick as a Victorian portrait subject with our Interfit background as a drape – A7R, ISO 50, Petzval lens at f/5.6 (Waterhouse stop) manually focused, Elinchrom Ranger Quadra RX flash.

Manual focusing with peaking and magnification combined tells you a lot about your lenses. Find a good lens, and the peaking will be present even at Low setting, with a very narrow band of activation. A poor lens (or aperture setting) usually fails to show a peaking line at Low setting, then shows one at Medium or High which has little discrimination. I’ve been able to identify my best manual and A-mount lenses by using the 14.4X magnification and the peaking function to examine targets.

Having done this, the extra performance squeezed out of almost lenses by super-accurate focusing makes AF seem inadequate. The contrast detection AF of the A7R is good, but just invoking magnified manual after it has locked on proves that it rarely hits the perfect mark. It gets to ‘good enough’. Like many new A7R owners, I find myself often using manual focusing without noticing that it is any slower than AF used to be. It’s a quantum leap ahead of any optical finder accuracy.

SONY DSC

I find the body shape and size ideal, and have no complaints about the position of anything except the shutter release, which could have been 3mm or so further forward, and also would have been improved by the addition of a manual cable release thread (found on the RX10). I don’t plan to get a vertical grip, as the whole point of the A7R is small size and light weight. The external finish feels secure, the battery and other doors are adequately sealed and I don’t tend to overwork them.

The small body size causes a few problems with tripod mounting. Even the smallest monopod head can restrict the rear screen movement making it impossible to angle the screen down if you want to hold the camera above head height. It doesn’t angle down much to start with. The position of the Menu button, needed to access some adjustments like OSS and Finder Setting Effect, isn’t ideal as the only button on the left end of the camera. The exposure compensation dial is unusual as a solus function using up an entire large mechanical control, and has no lock, so it can be turned a little easily.

The A7/R is so customisable that after a couple of months getting used to it and changing things you’ll have a camera as far removed from its out of the box settings as a typical Canon ends up. Mine, for example, has the AF/MF and AE Lock button/switch control set up to act as Focus when set to AF/MF (with pre-Focus and tracking lock and eye-start focus all disabled), and to act as Focus Magnifier when set to AE; while the shutter release is set not to activate AF, but to lock AE on first pressure (when using the camera in a controlled environment – when travelling, I soon reverted to AF with shutter). This makes the camera anything but point and shoot, as out of focus shots are guaranteed without a separate focus action.

In practice

Like far too many A7R users, I’ve spent half my time testing and experimenting, and not enough time shooting. I’ve had the RX10 as a companion at the same time, and needed to shoot with new flash systems, where that camera’s exceptional high speed sync makes it more versatile – there’s not much point having flash heads which manage 1/5000th duration when your sync speed is 1/160th, unlike the RX10 which can manage between 1/1600th and 1/3200th depending on aperture. I had a concert venue opening to shoot, with video, and once again the silent RX10 with its superb video quality was the obvious choice.

Then, at Easter, we had a nine-day tour of Kerala, an exceptional offer from Citrus Holidays providing us with a private driver and a packed itinerary covering 1000km and five locations. This was our first visit to India for 28 years, and would provide the first library images of India apart from a few scanned transparencies of subjects which do not date. Equipment mattered. Shirley always uses her Alpha 580 with Sigma 18-250mm OS original version; it’s heavy and the lens has been through one factory service already, but it’s been very reliable and survived a short period where a Nikon D600 kit was tried as a replacement (and sold pretty sharply, in favour of returning to the more reliable AF, AE and clean sensor of 580).

Logically, my A77 and A55 would have come along. They share the same battery type, and my basic lens set 8-16mm, 16-80mm and 70-300mm gives both exceptional wide angle and a good tele performance (300mm plus APS-C plus 24 megapixels) for wildlife. It is however a very heavy kit and we wanted to travel light and work light, in high temperature and humidity.

So, the A7R had to be my choice. Apart from anything else, this camera at £1800 had not so far proved ‘better’ for any given job – it was barely used. In the studio our A900 and A700 optical finders just work far better than any EVF camera, and for general PR and social photography the last thing you need is 36 megapixel full frame. It just creates oversized files and tends to have too little depth of field. The A7R had been used for tests, for some winter landscapes, and some architectural shots. We had not travelled at all since early November.

This decision also led me to leave the RX10 behind, and this was a big mistake. I took the RX100 instead because the RX10 is fairly large. Its zoom range and silent operation would both have been valuable. With the A7R and its 28-70mm OSS lens I took the 10-18mm OSS, my Tamron 18-200mm VC DiIII, NEX-6 body and 16-50mm OSS collapsible kit lens. This was really a backup in case any fault developed. In practice the A7R makes a better APS-C camera. I only used the 28-70mm lens once, and used the wide zoom and the Tamron fairly often on the A7R with APS-C crop, occasionally with crop disabled. While it’s possible to get a bit more wide-angle from the 10-18mm by shooting full fame, the 15 megapixel crop is a 100% perfect frame every time with this lens.

Despite the phase-detect focus of the NEX-6, this camera proved less accurate and slower in all conditions. Its main benefit was better timing for shots once the finder image is focused and stable, along with quieter operation. It may be a smaller body nominally but there’s little practical difference. Also, I was wearing a baseball cap, the minimum headgear needed in the sun. The left-end viewfinder eye position prevented a right hand ‘on top’ vertical grip on the NEX-6 while the central eyepiece of the A7R allowed a choice of grip style without having to remove the peaked cap.

The most significant loss my choice involved was telephoto power. Shirley’s 250mm f/6.3 reach on APS-C would have demanded a huge lens, a true 375mm or in practice a 400mm, to get the full benefit of 36 megapixels on full frame. It would also have demanded at least one f-stop more stopping down to match the critical long lens depth of field. I didn’t have an E-mount 24 megapixel body, but if I had one my 18-200mm would have slightly outreached Shirley’s 250mm as used on 16 megapixels.

162mmf8-anhinga-nex6

This snake bird (anhinga) was photographed using the NEX-6 and 18-200mm (162mm and f/8), from a moving boat. There is no trace of shake at 1/250th, indicating the VC stabilisation works on this body. I got excellent results from the NEX-6, which I picked up at The Photography Show on March 4th with its 16-50mm collapsible motorized zoom on a special deal. However that deal was not as good as the current B+H of $524 with free accessories.

There are no lenses yet made longer than 200mm for the FE mount. If there are any made other than an obligatory zoom to 300mm they will be expensive and limited to the E-mount system for ever. In contrast a Canon, Nikon or Alpha SSM long lens will always be usable on SLR-form bodies and also on mirrorless – possibly on various mirrorless systems. Canon EF lenses for example can be used on almost all mirrorless bodies, and Nikon teles have the possibility of fitting to their 1 system 2.7X factor bodies with totally successful functions and focusing. I’ve tried this and it works – an 800mm equivalent with outstanding image quality, from a 300mm.

It’s for these reasons I have succumbed to ordering an LA-EA4. I value the LA-EA3 because it allows me to use some lenses with contrast detect focus and a pure image path, but my favourite 70-300mm Sigma OS will not CD focus. Buy the EA4, and I can use all my screw drive Minolta and Sony glass.

This is why I sill feel the A7R can be described as the Swiss Army Knife! It can do APS-C as well as its 16 megapixel APS-C siblings, but switch to use full frame to squeeze extra angle from many lenses. My Tamron 18-200mm is only just compatible with the A7R – its VC stabilisation and general performance indicate that a firmware fix might be needed (see earlier comments) – but it can give me a 19 megapixel image sharp corner to corner with a range of image sizes from square to 35mm, at 18mm and f/11, making it as useful as a 16-200mm lens instead of an 18-200mm.

In March, I needed to write up the Samyang 24mm Tilt-Shift lens, which was only available for review in Nikon mount, and needed a full frame body. The A7R with a low-cost Nikon adaptor did the job perfectly and the magnified focusing function allowed full and successful use of the lens functions. I now have a wide range of lenses and adaptors, and there’s no manual lens I own which the A7R can not use.

SONY DSC

The Samyang 24mm Tilt-Shift f/3.5 manual lens has better control over movements (including 30° intervals for independent rotation) than the Canon or Nikon in the same focal length, though it lacks auto iris, EXIF data and focus confirmation. Here it is used with a low-cost manual Nikon adaptor.

24mmTSseriesmono

Using the 24mm Tilt-Shift – a lesson here in floor/ground and ceiling/roof relationships and camera position. First shot, a typical eye level architectural compromise in which a normal wide angle keeps the verticals straight. The trade-off is that you get a similarly generous view of both the floor and ceiling. Second shot, moving the camera close to ground level. Third shot, applying a full vertical shift; the floor is now seen from an angle giving it much less emphasis, while the vaulted roof is seen from below. For real estate shots, the camera is usually placed close to the ceiling on a tall tripod, and a drop front applied, to show the extent of room interiors better by emphasising their floor area. This is stuff I learned 40 years ago working with 5 x 4.

The A7R stabilisation incompatibilty issue with the Tamron 18-200mm was ‘tested’ at considerable cost in lost shots. During most of the Kerala trip, fortunately including a few chances to get close to wildlife like the anhinger shown above, I used the 18-200mm on the NEX-6 for the slightly higher resolution and faster response. I’m very glad I did this and put the A7R away. No shot shows any sign of stabilisation failure. Finding a dramatic sunset location with rocks and predictable spray from breaking waves, I used the same lens on the A7R, which I had taken to the beach to produce some tests showing full frame coverage.

175mmf9

One of my frame coverage tests of the 18-200mm on the A7R. 175mm, 1/200th at f/9 – conditions which with stabilisation should result in a perfectly sharp result almost every time. Instead, this combination produced a jerked slightly double imaged unsharp shot every single time. Even at 21mm focal length this degradation was visible.

All the images (full frame tests and rock sunset shots) showed the same characteristic stabilisation jerk even at 1/320th, which I had not considered possible as the peak vibration from the A7R shutter occurs 1/250th after the shutter opens. It may not be shutter shock which causes this shake effect, but a firmware incompatibility (in timing signals?) between the A7R body and certain lenses.

piccure-processed

Here is my processed image put through the new software Piccure, which I can recommend as the first program to analyse and remove shake effectively – see http://intelligentimagingsolutions.com – and which has significantly improved some of my A7R ‘shaken up’ shots to the point that when reduced to 9 megapixels, they are as sharp as you would have expected from a KM Dimage A2 (ah, the irony… we do make progress, don’t we?). Click the above image for a full size screen shot.

kovalambeachfamily-web

This was my final crop and process from the shot involved, which was an 18.2 megapixel ‘more than APS-C’ crop from the full A7R frame, sharpened using Piccure and reduced to 24MB final image size.

200mmsunsetrocks

This sunset, and all the similar shots taken with the 18-200mm on the A7R, proved too badly affected by stabilisation malfunction to use at the desired full size.

Again, Sony’s decision to disable OSS with many lenses on the A7R only, and to issue firmware updates to enable this, supports this theory. Whatever the case, I lost all my first night’s sunset shots for anything except web sized use (above – it’s not sharp for printing or library use). We returned two further nights at the right time and tried various combinations. It was a subject not helped by heat haze and blown salt spray (UV filters were fitted, of course, and needed cleaning frequently to avoid the whole picture being softened).

shakexample-rocks

It’s so bad it almost hurts your eyes, but this was the focus point of many shots, and the double image (always in the vertical direction when the A7R was held horizontally) from the 18-200mm Tamron consistently gave a result like this. You might also suspect inaccurate focus and poor lens performance, but plenty of other shots at similar apertures and settings on the NEX-6 were completely OK. Perhaps the only answer with the A7R will be the near-£1,000 70-200mm f/4 G and replacement of the 28-70mm with another £1,000-worth of 24-70mm f/4. All that to get me back to where I was thirty years ago in terms of aperture and focal length range!

shake2-rocks

Using Piccure had no useful effect on this shot. It created triple outlines of the shake in place of double.

Eventually I got what I wanted but only with the 70mm reach of the 28-70mm OSS lens. The final, third, visit had cloud cover as the sun reached the right position. But, if you want to try this for yourself, visit Light House Beach in Kovalam at around 6.00pm (get a beer and wait) around April 16th-22nd. Like all such sunsets, there are just two times each year where the sun will hit the right position over the horizon.

lighthousebeach-sunset1

The 28-70mm really didn’t have the power to give me the sun at the size I wanted, but at least with Photoshop processing this was a more or less acceptable result. For any shot like this, I would far prefer to have a true mirrorless camera – no SLT mirror either – and the A7R should be a perfect choice. Tripod use was not an option because of the crowds (which you can’t see) and combination of incoming tide and wave.

There was one lens which never let me down – the 10-18mm OSS. Whether on the NEX-6, A7R crop or A7R full frame this lens always turned in a perfectly focused and well stabilised result.

At the end of our Keralan tour, we were invited to have lunch and a short tour of a major ayurvedic resort hotel, Isola di Cocco. The tour only took twenty minutes, seeing some of the rooms, and was at mid-day when the light is not ideal. I took a few shots on the A7R including room interiors, and sent small versions to our hosts afterwards. The outcome was a request for commercial use of the image set in their next brochure. These were not exactly what we would do on a commission – for one thing, we’d normally remove towels from round the pool, pick the best time of day, make fine adjustments to room details and even use lighting.

Isola di Cocco Resort Poovar

A pool needs to be very clean to handle a shot from three inches above the water surface (at 10mm).

This is what we we used to do in the 1980s producing brochure pictures for travel operators and it was never a casual thing, more a very long and full working day with many appointments and too much driving. These shots were quick snaps, even if professional snaps, and we agreed to use for a charity donation (all Indian businesses seem to support local charities as a matter of routine).

We’d be more than happy to go back and do it properly though!

Back in the 1980s we had nothing to approach the 15mm equivalent angle of the 10mm used on crop frame A7R, even though a few such lenses did exist for 35mm systems. 35mm was like using a 6 megapixel camera, and our shots had to stand full page to double page use. I used a Pentax 6 x 7 with its widest non-fisheye 45mm lens and that was equal to a 24mm, something you can now find at the wide end of many compacts. It had to go on a tripod, as the exposure times with Fujichrome RF 50 film (for shadow detail) with the f/16 or f/22 apertures needed for sharpness in depth were usually around 1/4 to 1 second. The tripod was one you couldn’t easily take by air today, and the camera kit with two bodies and three lenses was heavy and bulky. Then there was a matter of a hundred or so rolls of film to handle the five bracketed exposures for each frame, lead anti-X-ray bags, and a large Metz flash with an extension head… and our 35mm Minolta kit on top of it all. Each room could take an hour or more to photograph.

Isola di Cocco Resort Poovar

Raw conversion controls enable the rich teak wood interior to be shown clearly without losing the highlights of the wall and white sheets.

And here I am today, complaining about aspects of the A7R when I can walk into a room like the one above, without a tripod, find my viewpoint, observe the horizon level display while composing carefully, and make an exposure at ISO 1600 with quality equivalent to ISO 100 35mm film. With a lightweight carbon-fibre tripod, this almost Leica-sized camera can now outperform anything we might have expected from 6 x 7 film and at ISO 50 is good enough for wall-sized prints and poster reproduction.

We have some aspects of A7R technique and performance to ‘fix’ and you’ll realise that I do not approach using any new camera uncritically. But there’s nothing else on the market short of medium format which can match what it does.

I do not address, here, the demands of users wanting to switch from conventional heavy-duty SLR type cameras whose gear includes fast long apo telephotos and zooms, who work frequently with sequence bursts, require to track sports action, shoot news, capture wildlife or want to snap their kids and pets (which requires much the same camera performance as covering sports and news… they may move slower but they are much closer!).

My present thinking is that the new 12 megapixel A7S with its 4K motion picture capture and extreme low-light performance may not be what I want, but I’m considering adding an A7 or changing the NEX-6 for an A6000. I’m not quite ready to sell the A900 or the A77. I’ll see how the A7R performs over the summer and update in due course.

The A7 MkII with full-frame stabilisation, announced in November 2014, tends to put my theory about power drain and lenses into doubt, but only because I might assume the 5-axis sensor stabilisation also puts a heavy load on the battery. It does have the different shutter mechanism found on the A7, and of course, it does not have a 36 megapixel sensor to power.

– David Kilpatrick

 

 

 

 

20/20 vision – Sony Alpha 58 review

In the last year two cameras have been through my hands and impressed more than any others with the quality of their sensors. Those cameras were as different as they could be – the full frame Canon EOS 6D, and the pocketable Sony Cyber-shot DSC RX100. They have one thing in common, 20 megapixel sensors.

Of course there is no connection; a 24 x 36mm Canon sensor and a 8.8 x 13mm Sony sensor are very different. But if you shoot at ISO 125 on both cameras, and process from raw with a normally exposed scene, you will be hard pressed to tell the results apart.

SONY DSC

So, when Sony – proving a giant-killer with the 1.0” format RX100 sensor – creates a budget DSLT model with an APS-C 20 megapixel sensor it would be reasonable to expect that this would outperform the RX100 and in the process prove superior to the 24 megapixel Alpha 77, 65 and NEX-7. It might even match the Alpha 99.

The Alpha 58 was announced at the end of February 2013, and some major websites had still not reviewed it by June. This is the first new Sony APS-C silicon for two years. It’s not found in any other body. Why the lack of urgent interest?

Perhaps, like me, the entry-level grade of the A58 has been responsible. It’s by far the worst Alpha body ever manufactured, and the first to have a plastic lens mount where machined metal is normally used. The whole physical feel of this Thai-made camera is inferior; it even has a slightly rough external texture which picks up handling marks the moment a store customer (or cynical on-line orderer intending to try, but return for a refund) so much as touches it.

SONY DSC
It has a relatively low-resolution, small rear screen (2.7 inches and 460,800 pixels) which is in the simplest and most restricted kind of up/down angle hinged mount. Against this economy, though, you need to balance a better OLED electronic viewfinder based on a one-inch 1,440,000 pixel display and a change to the new Sony Multi Function Accessory Shoe (without a protective cap, and without the adaptor for the Minolta/Sony Auto Lock shoe). It also uses the larger FM-500H battery common to all other current Alpha models, not the smaller FM-50H used by the NEX and also by some previous Alphas like the A55.

What is really new about the A58 is the price. I was not interested in the camera, though curious about the new sensor, because it was $600 US or £499 UK with the most basic lens , a new 18-5mm f/3.5-5.6 SAM II with quieter and improved internal focus motor (delivered, like Canon kit 18-55mms, without a lens hood). Then while helping a professional friend decide how to replace an A350 used for some unique underwater photography where the Quick Live View AF function has no equivalent in other makes, I looked into the A58.

SONY DSC
It was on sale, in Britain, including VAT and properly sourced from Sony, for under £350. The actual price of the kit was only £291 before added VAT sales tax. This was £100 cheaper than the lowest price of the RX100, less than any other DSLR on the market with anything like the same specification. Bear in mind what a replacement Sony battery costs (around £50) and what an 18-55mm fetches (officially more, but in practice around £100 new) and this body was coming in at about £150. That’s a point and shoot compact price.
So I bought one.

First impressions

SONY DSC

The packaging for the A58 cuts down on many things – recent Alphas have been festooned with stickers, this one has a single swingtag and a sticker on the rear LCD promoting connection to Sony’s webserver to obtain PlayMemories Home, the kiddy-friendly name for what is probably quite functional software, if you happen to use a Windows PC.

SONY DSC

When you have charged the battery and loaded it, the first time you turn on a similar message fills the rear screen. Everything works as you expect from an Alpha, though some mysterious glitch stepped the entered date back by two days. You can only set to complete minutes, not seconds. Some defaults are set to ‘on’ including Smile Shutter and Auto Object Framing, and for my use these were disabled and the recording mode set to shoot RAW+JPEG, sRGB.

SONY DSC

The supplied lens is a cheap product glitzed up by the addition of a metal microskin on the front bezel, behind the rotating rubber rimmed zoom and focus tube, 55mm filter thread. The SAM focus is quieter than the original version. The plastic-on-plastic mounting action is smooth enough, but when changing between the 30mm SAM macro (very noisy and jerky motor in comparison) engagement of the contact array was not always positive and the lens had to be twisted back and forth once with the lock pressed to enable AF.

SONY DSC

The A58 is set to use electronic first curtain and SteadyShot Inside sensor-based stabilisation, both switched via the main menus. The Function button, which can access most regularly used settings does not reach these directly (a second menu screen is involved, very easy to use). There are also direct access button-positions round the rear controller for the important Drive, Picture Effect and White Balance settings, and a dedicated ISO button close to the shutter release. These can be customised to a degree, like the stop-down/intelligent preview button on the camera front which can be changed to work as a focus magnifier.

SONY DSC

What’s initially surprising is that the shutter sound is noisier than many cameras with flipping mirrors. It’s not a pleasant sound either, mechanical in a clockwork-motor way. It all happens after the shot has been captured, as you can tell if you make a long exposure. Maybe the lightweight mostly plastic construction of the body, with its minimal metal skeleton, fails to damp the sound.

The viewfinder has the same contrast and dark detail failings as the A77, and in some ways the old A55 finder provides a more useful view. The rear screen is not very bright, and there is no auto brightness setting, just a 5-step manual control. In return, whether you use the LCD or the EVF makes on a tiny 10 shot difference to the 700 frames expected from one battery using the former. This stamina is double that of an EVF camera using the smaller battery type and restores a more than acceptable battery life per charge to Sony’s consumer entry level.

SONY DSC

What is excellent about the finder is the ocular. It has been designed to give extreme eye relief – 26.5mm from the eyepiece glass, 23mm from the rubber frame surround. This compares to 19mm/18mm for the same data on the A55 (eyepiece glass not well protected from dust and light ingress, but eye needs to be close) and 27mm/22mm for the A77 (very deeply recessed and shaded ocular, reasonable eye distance). Part of this is down to display module sizes: 1.0 inch for the A58, 1.2 inch for the A55, 1.3 inch for the A77. Matters are further confused by the A55 failing to use all its EVF for the image, so the eye also sees a large near-black surround except when using menus which then expand to fill it.

Overall, the EVF looks like a view which is A55 size but A77 quality, like using a cropped section of the A77/99 2.4 megapixel EVF module. Sony has made this much easier to use with spectacles, or with the camera held an inch away from your eye. So although it’s not the best finder ever, it may be one of the best choices for anyone who has trouble with eyepoint. I found the EVF very blue at its neutral point, and set two notches of warming up to match the eye’s view.

SONY DSC

The controls are no different from any other Alpha, they don’t feel rough or weak, and every button push got a response as expected.

SONY DSC

The cover for the single dual purpose SD/MSDuoPro card slot is not a tight seal, and does not need firm action to open. The synthetic rubber single seal door over the microphone jack (no manual level control), Micro USB matching the RX100, and Micro HDMI ports is a good flush fit. There is also a Minolta/Sony unique DC in socket with similar cover.

SONY DSC

What’s missing is the old Minolta and later on Sony remote control socket. Instead there’s a pretty clunky wired remote which works via the micro USB port. It looks like a version of a Chinese generic. This connection offers the only way to get wireless remote control, with a suitable device, as the camera lacks the IR receiver and has no Drive Mode for it.

SONY DSC

The body shape in the hand is just a little more cramped than the A55, far more so than the A580, both cameras we have and both ‘replaced’ in the Alpha line up by this one model. I’d say it was less of a good fit to my hand than the classic Minolta Dimage series bridge cameras, or the Nikon 1 V2. Both of these were around to compare directly.

The critical bit

Then after getting acquainted with the camera, comes the question of the sensor performance. Here, the viewfinder gave the first clue that unlike the ‘sweet sixteen’ CMOS this 20MP newcomer was not going to move any goalposts. In domestic lighting, the level of noise in the EVF is higher than the old A55 and comparable to the A77.

However, I chose to compare the A58 with the RX100, because of the great advances made in the RX100’s very small 2.7X sensor. The results show an interesting divergence from minimum (100 for A58, 125 native for RX100) ISO to maximum. There is almost no advantage to the A58 up to ISO 400. Both cameras, with similarly adjusted raw conversion, yield clean images and it’s not even easy to tell ISO 400 from 200 or 100. If you click the images below, you’ll access a full size original conversion from raw (ACR).

A58, ISO 100, full sun, shadow to highlight from raw

RX, ISO 100, deep shadow to full sun on white, from raw

A58, ISO 400, full sun on wide tone range, from raw

RX100, ISO 400, wide tone range in full sun, from raw

As you increase the speed, the 58 rapidly shows its advantage and by ISO 1600 has both a structure which looks finer in terms of granularity, and with far less chroma noise. Where a carefully processed ISO 800 from the RX100 might match a carelessly handled 800 from the Alpha, at 1600 it’s very difficult indeed to close the gap. By 6400 the RX100 is not really useful but the 58 can still deliver a fairly normal looking shot – it does begin to look like a desperate measure. Then you have 12,800 and the absolutely pointless 160,000 top setting which seems to be there for advertising purposes.

Taking into account differences in colour rendering, the advantage of the larger sensor is levelled if the RX100 file is reduced to 4500 x 3000 pixels and moderate chroma noise reduction applied. In relative terms, the small sensor is better, because it’s actually only a little over one quarter of the size of APS-C.

Compared to the 16 megapixel Sony sensor (NEX-5n, A55 and many later models as well as Pentax and Nikon variants) the 20 also fares pretty well. It has higher levels of luminance noise but minimal chroma noise. It’s not easy to reduce the luminance NR without softening detail, when using Adobe Camera Raw or Lightroom. It does not harm sharp detail much if left alone; if this sensor actually has an AA filter, it’s very weak.

Macbeth_ColorChecker_RGB

This a MacBeth ColorChecker rendered using the official sRGB values.

iso200colourchecker

This is an ISO 200 shot on the A58 with the greyscale white balanced to match the above, Iridient Raw Developer conversion using Iridient’s A58 profile. See later comments on colour and reds.

As for dynamic range, it falls off as the ISO in increased. At ISO 100 or 400 a typical high contrast sunlit scene is perfectly recorded, with only bright specular highlights clipping to 255-255-255. It can handle everything from shadows on dark areas to direct light on white. A few practical comparison shots show that the RX100 can do exactly the same things – indeed, precisely the same areas clip at the highlight end.

This simply indicates to me that Sony has matched the processes used in the two cameras against a common exposure and contrast standard. I’d have the rate the JPEG engine of the RX100 a little better than the Alpha, and images seem to need less work. Against the Alpha 99, the 58 gains some significant processing speed in raw converters as it’s producing 20 megapixel 12-bit files compared to 24 megapixel 14-bit.

Click this for the full size to see detail.

Compare this RX100 shot. It’s interesting.

A hidden benefit of the 20 megapixel sensor is that if you use Adobe Camera Raw, this program offers a range of preset optimised output sizes converted directly from raw, which can be previewed at 100% of their actual pixel size before conversion. All 24 megapixel cameras have this as their largest output size, all you can do is downsample. 20 megapixel cameras offer a 25 megapixel output option, as do 16 or 18 megapixel models. The RX100 has already proved to me that it can make a 25 megapixel image that’s hard to tell from a native A77/99 image. The same goes for the Alpha 58. It can be set to export to this larger size, and if you use a top grade lens and low ISO, the result will be better than a native 24 megapixel at higher ISOs with a medium-quality lens.

Overall, I find it hard to rate the new 20 megapixel sensor as better than either the classic 16 megapixel ‘sweet spot’ sensor or the maximum 24 megapixel APS-C, but it is as competent as either of these in its own right. I guess the truth is that at all these resolutions, superb image quality is possible.

Other aspects of performance

Since the A58 uses the 15-point, 3-cross AF sensor which has been proven ever since it first appeared in the A580 and A55 it has identical performance; fast, very accurate AF down to EV -1 (50mm f/1.4). The exposure metering is, again, the familiar 1200-zone Sony system and works down to -2EV.

The actual focusing mechanism works no better with SAM or SSM lenses than with screw drive. It’s not the best ‘old’ mechanism in there and it lacks fast/slow AF setting, but it’s fast for certain. In low light although AF will lock, it needs a good target. Throughout my use of the camera I found the focus the least accurate and consistent of any Alpha body I’ve used, leading me to question whether I had accidentally set the lens to MF, so many pictures were clearly focused on some other plane than the subject, nearly always a definite back focus. The AF module is officially the same as the A55, A580 and so on. I can’t help thinking it is the same design but perhaps, like the rest of the camera, built to a budget.

The A58 couldn’t really back focus this shot at f/8 but it took three shots to get one sharp.

Click the RX100 (f/5.6) example too, to see the real difference.

Switching between rear screen and EVF using the eye sensors, or if you have the rear screen off just turning on the EVF, is good on this camera. Its balance tends to prevent the eyepiece sitting against your chest, and thus avoids accidental activation, but it’s always brought the EVF into action by the time your eye is close enough to use the finder.

Regrettably the EVF and rear screen both lack the instantly visible high resolution needed to know whether your image is pin-sharp. Even the far superior finders and screens of the A77 and A99 do not give you the same awareness of this as an optical finder. The good news is that Focus Peaking can be turned on. This really isn’t sensitive or accurate enough unless you magnify the image, and much of the time, you simply don’t have time to do this.

So, the A58 is capable of pin-sharp images and you can be sure under the right conditions with the right technique that you won’t be short changed out the 20 megapixels you expected. But a lot of the time for everyday shooting it’s not very good at getting AF pin-sharp, and those same 20 megapixels do their best to show any error clearly.
In practical situations, ISO 400 is as noise-free as ISO 100 and gives you the chance to use a smaller aperture for more depth of field. The 18-55mm SAM II lens is not very sharp at 55mm wide open, and it proved optimistic to expect f/6.3 or f/7.2 to be much better. The old ‘one stop down for zooms’ rule works well enough. The 20 megapixel sensor shows signs of slightly softening at f/11 so the sweet spot for me has to be around f/9 or f/10.

The A58 has slightly warm tones overall and pinkish flesh colour

The RX100 on the same scene is more neutral or cool

You can click the images above for full size versions (same applies to all those shown in link frames like this).

As for colour, you’ll be happy if you have always like Canon DSLRs. not so happy if you were either a Sony (sunny!) or Minolta (full spectrum) sensor colour fan. This sensor shows every sign of having relatively weak RGB colour filters and a non-linear response, with underexposed shadows on higher ISOs in daylight tending towards magenta. It’s rather too easy to get putty-pink skin tones and a certain lack of subtelty in sky gradations, though blues and greens are not bad. Subjects like red flowers test the colour discrimination of the sensor to the limit.

Holyrood gardens

It’s truly intense – but is it realistic? Camera profiles for raw conversion may tame this.

Let’s just say that every other current Sony Alpha model, and many past ones, will yield more visible difference between close hues. This is what you might expect from the more densely populated 20 megapixel sensor but, as ever, I’m left wondering why the little RX100 seems able to yield better colour (whatever DxOMark.com may say – but they also put the low light ability of the RX100 way below its actual performance).

At present there are no camera profiles available when converting files using Adobe Camera Raw, and the Adobe Standard colour seems to handle reds from the A58 badly (this is why I refer to Canon – the reds look much the same as problem Canon reds of the past). I don’t believe that red paint, red clothes, red street signs and red flowers are all are one type of red and when clipping warning is turned on, almost all the reds clip.

Shutter and flash

The shutter of the A58 is able to synchronise short-duration fast triggered flash, such as a thyristor camera top gun, up to 1/250th on manual without any shutter curtain clipping; at 1/320th, a shadow intrudes slightly on the frame. This is a better performance than indicated in the specifications, but for studio flash (mains powered) I would recommend working at 1/125th and for Sony/Minolta dedicated flash at 1/160th.

The shutter itself does not operate or make any noise whatsoever until AFTER the picture is captured when you use ‘Electronic First Curtain ON’ setting. The capping shutter blind has a cycle (close and return) of approximately 230ms overall in single frame mode resetting the camera ready for the next shot, or 115ms for continuous shooting which fits in with 8 frames a second fastest (cropped) frame rate. If you use the mechanical first shutter curtain, this adds exactly 50ms or 1/20th of a second to your release lag, which is not as easy to measure but seems to be in the order of only 20ms (1/50th).

Overall, this makes the A58 one of the most hair-trigger responsive cameras you can possibly own for capturing action – or would if the AF were faster and more reliable. Pre-set focus, use manual exposure, and you can trigger exposures with this camera as fast as you can think – just like the A99.

With its built-in flash or dedicated Sony flash, there’s the usual small delay caused by preflash. You may think the shot is being delayed more, because the shutter operates after the exposure, and then as the finder returns to life you get about 1/30th of a second of ‘review’ of the shot taken even with the 2s or 5s (etc) image review disabled. This happens all the time with the camera, the first frame or two of the finder refresh is a fleeting glimpse of your captured shot, and it’s useful. With flash you may be viewing a dark scene, the finder itself is blacked out when your flash fires, but this sudden bright image looks almost like a delayed flash through the eyepiece. Of course it is not, this is just an impression.

The built-in pop up flash becomes a rather aggressive AF illuminator when flash is active and the camera has trouble finding enough light for an AF lock. You certainly do see the effect of this through the finder, a surprisingly long and bright burst of light. It must drain the battery fast.

Flash exposure, long a problem with Alphas, seems predictable. A pile of black camera bags produces a full exposure (histogram hitting the buffers at the right hand end) while a white paper document in the middle of the frame results in one stop under. No doubt users will find specific flashguns or situations which produce wildcard exposure. That’s why you should always enable DRO+ Automatic or something like level 3 when shooting with flash. This dynamic range contrast optimisation process can produce great flash pictures out of the camera but remember it only works well at lower ISO settings, do not go over 800 and expect DRO+ to keep you smooth noise-free image.

The A58 appears to allow DRO to be used at higher ISOs, which earlier cameras often lock out because of its effect on shadow noise. However, both the printed manual and the downloadable handbook contain many inaccuracies and ambiguities; even Sony’s specification for the camera on-line has problems, listing standard and magnified views in the finder instead of eyepiece glass and surround against the two eye-point figures.

Wireless flash operates in the usual way, with the pop-up flash acting as a commander once paired by first fitting the remote flash, turning on, selecting WL Flash mode, and removing the remote. This is now a 20-year old Minolta technology updated – something which took Canon fifteen years to catch up with, after which they progressed further. The Alpha wireless flash works but it’s frozen in time. At least, with the optional adaptor, you can use earlier Minolta and Sony flashguns of the HS(D) generation and later.

HS is the high speed burst mode (long duration resembling continuous light) and the A58 can use HS flash at all shutter speeds up to 1/4,000th. The A58 has a useful Slow Sync function which delivers and automatic dragged shutter setting according to the available light, and a Rear Curtain sync as well. The camera may, with the built-in flash, switch to a slow longer recycling time even if you load a fresh battery when shooting flash intensively. This is to prevent the camera (not the flash) from overheating.

Studio compatibility

One reason I obtained an A58 to look at was because Ian Cartwright, a friend of mine who shoots models and babies underwater, had obtained an Alpha 580 on my advice to replace an A350 only to find that this camera forces a strange blackout delay of almost half a second when using any dedicated flash. The A350’s otherwise similar Quick Live View does not have this peculiar firmware fault. I can confirm that the A58 fires in real time, and unlike either of the other two models, can be used with PocketWizard or an infrared trigger. That’s because the finder view can be switched to ‘Setting Effect OFF’ which defeats exposure simulation and gives you a bright view even in manual with setting like 1/125 and f/11 under dim modelling or ambient light. The A58 can be used in the studio as easily as the A99, because of its ISO hot shot compatibility and this feature.

Dried roses

For this studio shot I chose not to use flash, it was lit by my Interfit 3200 tungsten outfit (great for video) instead. The colour rendering matters little because the image is adjusted in processing to give this look.

As to whether you would ever want to use an EVF camera for studio work, that’s another matter. I have bought a replacement Alpha 900 after three months trying to use EVF for studio set-ups and temporarily reverting to my A700. It’s not just the quality of what you see when composing and adjusting your studio shot (stray hairs over a face or a clothing fibre landing on your still life are just not visible with EVF) it’s the need to have power saving permanently turned off to keep the screen or finder awake as you do all the lighting and reflectors, background and subject adjustments. Nothing is more annoying than having to half-press the shutter to wake up your camera every time you go back to check – and with the A58, the shutter release is so light it’s easy to take a shot instead of waking the finder view.

The A99 can be used tethered and plugged in to AC, with a USB cable to a remote capture Mac or PC, and a live feed to an HDTV monitor. Do that and the business of setting up and adjusting a studio shoot becomes far easier with live view. I just don’t do enough work of any kind to justify that, it’s quicker to keep using the old familiar glass prism. It looks as if the A58 can be used the same way, joining the A77 and A99 by having PC Remote capability and HDMI previewing, while the A900/850/700 are the only other choices in Alpha history able to use PC Remote.
This does open the door to using a netbook, for example, as an intervalometer timer or remote release. There is no App for iOS or Android but the PC Remote control panel is well designed to fit a smartphone. There is no Wifi in the camera (it has good compatibility with EyeFi cards, invoking special display icons).

Video

Due to the softness and lack of AF sensitivity of the 18-55mm SAM II lens, my couple of quick test videos in real situations were not stunning but also not too bad. The sound quality is reasonable without plugging in my Rode Video Mic, stabilisation of video is very good indeed, and by using the dedicated video setting I was able to set my own shutter and aperture. You can also lock out the movie button except when the mode dial is set to video, preventing accidental video clips.

If you want the camera for video, either the 18-135mm SAM lens or even better the 16-50mm f/2.8 SSM (quiet fast focus) will do much better than the 18-55mm. The A58 lacks the highest quality video encoding of the A77 and A99, but you can get the vital requirement of 25/30fps at 1080p, the second highest level found on other Alphas. The clip above is at best quality with the 18-55mm; it took some fairly extreme action (the car driving right towards the lens) to persuade the AF to bother to try to track, most of the time it was telling me, hey, that’s good enough, no need to refocus… or even focus to start with.

Special functions

Although the A58 has been trimmed down in some ways, other aspects have been improved, compared to past entry-level cameras. There is no wireless remote drive mode, and no 2sec self-timer, so unless you buy the unusual Micro USB wired release you have to use a 10sec timer for shake-free tripod work.

Bracketing is only three frames, but the range is now large – 0.3EV, 0.7EV, 1EV, 2EV or 3EV steps. HDR Auto can also use a 6EV span (±3EV). You can not control the auto ISO range, but it’s a reasonable 100-3200. If you shoot JPEG and choose multishot noise reduction, an auto 6400 may be selected, and some of the Scene modes may also enter this range. But if you shoot raw, you have to select ISOs from 4000 to 160,000 manually which makes them harder to get by mistake.

There are many picture effects, both single and multi-shot, in the A58. One of the more interesting is Rich Tone Black and White, which uses three shots to build a gradation resembling a traditional darkroom print.
The sensor does not appear to support sub-frames, or cropped raw files, in the same way the A99 or Nikon D600 can do. The maximum frame rate for continuous shooting is 5fps for full size raws, but the buffer is minimal and the best I could get was four frames in a burst before a major pause and intermittent resumption, never at 5fps. On raw you get click-click-click, off to make coffee, click, take a walk round the block, click, remember to turn the lights off before going to bed. It’s that bad. JPEG Fine, which delivers 4 frames at 5fps, then becomes intermittent and variable in capture speed but a little faster than raw.

To get anything better, you must convert the camera into a 5 megapixel 3X factor (2X crop of the 1.5X sensor) by setting it to T8 (Tele 8fps) continuous mode on the main control dial. This delivers about 8.1fps for 24 frames on a 95MB/s SanDisk card, then slows to capture around 5-6fps in a regular pattern of two frames at 8fps, hesitation, two more and so on. On a slower card, Transcend SDHC, I got 12 frames continuous and a slower more regular tail. Memory card speed is clearly critical for getting the best from the A58.

Since you can’t get a 5MB cropped raw, exactly how this mode functions is a bit of a mystery as JPEG images are produced via an intermediate raw file – that’s how things work. So inside the camera, 24 frames can be processed and cropped in 2 seconds – but it can’t even manage one second of unprocessed raws at 5fps. This indicates the processor is fast and the input buffer big enough, it’s the output buffer and card interface which causes the bottleneck. Card interfaces and drive assemblies are third party products normally bought in by the camera maker, while the main processor is their own (or a dedicated design based on a Fujitsu module or other OEM).

This camera is extremely low cost and I think this is simply one area where cost savings ended up reducing what could have been a great specifiction and performance.

Digital and Clear Image Zoom

The A58 has a Zoom button, like a Cyber-shot DSC RX100’s zoom control that goes beyond the mechanical range of the zoom. Since you can’t go beyond the zoom on the lens itself, you go to the tele extreme, press the zoom button and a bar appears on the displays. Up to 1.4X magnification, you get a cropped shot (JPEG only) but this crop fills the EVF/screen and is enlarged by interpolation to 20MP. Up to 2X, you get Clear Image Zoom which is profiled or custom interpolation, similar to software packages which can enlarge JPEGs better if they have a profile for the camera used. Up to 4X, the rest is ordinary Digital Zoom which means the resulting 20MP image has really been created from a 1.25MP area of the sensor, and it shows.

Fine JPEG, normal shot

Interpolated Zoom 1.4X. 18-55mm at 55mm.

Clear Image at 1.9X (all at f/8)

Digital zoom to 4X.

I made some tests with the 18-55mm and its vague focusing and overall modest quality lowered the bar for the digitally zoomed range. Then I tried with my extremely sharp Sigma 70mm macro. I think the 1.4X range is acceptable for all normal uses, the 2X range is almost acceptable, beyond this the softness overpowers any possible reason to want a 20MP output file. There is a mark on the zoom bar showing the change from resized and Clear Image (1.0-2X) to Digital Zoom (2.0-4.0X) but I was unable to get the zoom to fix on 2.0X, instead it insisted on using 1.9X or 2.1X but placed the 2.1X on the ‘safe’ side of the mark.

70mm macro, raw shot at f/10

Fine JPEG of same ISO 200 shot.

1.4X interpolated zoom.

2X Clear Image zoom

4X Digital Zoom. Still 20MP…

As expected, the A58 has Sony’s excellent sweep panorama mode, and just about every other Sony original technology around from face recognition and smile shutter through to auto framing (an intelligent crop which keeps a copy of your uncropped JPEG too) and AF object tracking. Its Intelligent Auto and Super Auto modes will serve the beginner and general family photographer well.

The A58 has sensor cleaning and does vibrate the sensor on shutdown, not on switch on; this is not listed in the specification, which just mentions the anti-static coating. Manual cleaning is possible and Sony make two notes of interest – they advise blower cleaning the back of the mirror before lowering it (so clean both this and the sensor in one step) and they say that you can not shoot with the mirror raised. My camera had no sensor spots on delivery.

Future expansion

The A58 shares with the NEX-6 and Cyber-shot DSC RX1 the new Multi Function Shoe, and some of the accessories for this shoe are futureware. All these cameras lack the GPS found in the A99. The Multi Function Shoe’s interface includes pins to connect a GPS device and record location data as you shoot.

alpha99-shoe

Despite my affection for the robust qualities of the little Alpha 55, the Alpha 58 does more and when armed with my 16-80mm CZ lens makes a good travel camera. For that, I want to have GPS. So of all the possible future accessories for the shoe, this is the one I hope Sony will produce soon. Other possible accessories are a Wifi remote shooting module (the interface could allow image preview remotely) and a PocketWizard or similar wireless flash trigger. The shoe interface might even enable uncompressed video streaming to external recording devices, or back up between the camera and an external SD card or USB stick. It can also feed an external larger video monitor or a mic/headphone module which might have auto gain over-ride for sound recording – or perhaps these functions may be combined one day in a video/audio adaptor.

These are the prospects which this one change in the Alpha system brings, yet there is no sign that Sony is rolling out MFAS accessories. It’s also true that each camera’s own MFAS may have missing pins, or differently assigned pins (that would be seriously bad planning). You can not, for example, use the EVF of the RX1 on the A99 shoe, though both cameras have 24 megapixel sensors and the same EVF display resolution. The camera does not recognise it.

SONY DSC

Made in Thailand – not a bad thing, and Thailand has a big camera industry with Nikon, Sony and others. But this does feel like the lowest cost, most pared-down offering ever in the Sony DSLR/SLT lineage.

Changing the market

It is a pity that a camera with a brand new sensor and many advanced features and functions should ever have been designed down to the lowest price-level by reducing the specification of far too many components, from the lens mount and body itself to the displays and the buffer and card interface.

Sony’s manual and general approach to the camera menus and built-in help indicate that it’s targeted at what Americans would call a ‘soccer mom’ market. Well, your own kids are always beautiful even if the rest of the internet community groans inwardly every time another snapshot of infant overfeeding is posted to support how wonderful dad’s new camera is. They are always polite and agree.

Same goes for this camera – for those who acquire it as a new addition to the family, it will be the best thing ever made. And in some ways they will be right, nothing else comes close for the money. Unlike the sprogs, the Alpha 58 has inherited many desirable genes but suffered from malnutrition during its gestation. It could have been a robust, capable semi-pro camera in the tradition of the A580, the last Sony Alpha to have an optical finder.
Perhaps the 20 megapixel sensor will appear in a higher level body. How about an A68? For me that would be close to home (look it up on a UK road map!).

– David Kilpatrick

Sony’s Alpha 99 – mastery wrapped in dilemma

alpha99side

The launch of and initial reaction to Sony’s Alpha 99 has been spoiled, for many, by the overpricing of the camera generally and to a greater degree in some key markets. The promise of the SLT design, and Sony’s move away from flapping mirrors and optical prisms with their associated collimation and alignment, was one of reduced manufacturing cost and more competitive product.

Along with this, we should remember Sony’s 2006 statement that external mechanical controls, switches and buttons would be reduced on future models for the same reason. The Alpha 99 has as many external physical controls as any predecessor and will make traditional users happy.

a900toa99

Compare the Alpha 900 and the Alpha 99 – despite apparently very different designs, they share many points and clearly come from the same gene pool. There is no longer any need for the largest glass prism of any modern DSLR, the power switch has moved to Nikon position round the shutter release, lines are rounded off. The construction is similar as the strap lugs fitted through the outer skin into the solid magnesium chassis indicate.

a900toa99rear

From the rear, the 900 looks somehow more complex because of the left-hand button array. In fact the A99 has just as many buttons (it is only missing a SteadyShot switch and the selector round the AE lock button for metering method – this is no longer as important with the 99 doing its metering directly from the imaging sensor).

Out there we find Canon’s lightweight travel-friendly full frame 6D appearing at £900 lower launch street price (UK) with both that essential built-in GPS and the marketable function of WiFi, and Nikon’s almost comparable D600 officially at a £500 lower RRP, and a street price match for the Canon. In practice the UK Sony price of the A99 fell from £2499 to £2299 in the first two months on sale; the D600 fell from £1955 to £1495 in the same period (WEX dealer figures) and on that basis we can expect the see the Canon fall to £1395 in early 2013. By then the A99 may have fallen to £2195.

Sony lenses are not cheaper, nor wider in range of choice or sources of supply, than Nikon or Canon. There is no collateral benefit when you hand over as much as 50% extra to Sony for their innovative cost-saving technology. In my British Journal review, I concluded that the Alpha 99 was between 30 and 50% over-priced and combined with the cost and limited range of Sony lenses there would be little good reason for any new full-frame entrant to prefer Sony over Nikon or Canon.

At the same time, the Alpha 77 – so close a sister to the 99 that it shares exactly the same EVF and the same file size, with identifiable advantages in some respects – has been selling for £819 body only in the UK when the 99 in the same store was priced at £2299. That’s 64% less, 36% of the price or just over a third. You could almost buy three A77s for one A99. And it even has that very useful built-in flash.

a77-a99-topaligned

You may pause to work out which of these, photographed to exactly the same scale (one shot) and then moved so that their focal plane markings coincide horizontally, is the 99 and which the 77. The 99 is actually bigger but looks smaller.

a77-a99-sideheight

This will give you a better idea of the height of the A99, and also the improved eyepiece which puts your eye further away from the camera screen or back than the A77.

Assault and battery

In fact, there’s a hidden penalty in addition to the high price of the A99. The Nikon D600 with its single 1900mAh battery as supplied will keep on shooting into four figures where the A99 with GPS enabled manages a couple of hundred on a good day with the wind behind it from 1650mAh. Officially it does over 400 without GPS. That was not my experience, any more than it has been with the Alpha 77.

Perhaps this is because of the odd conditions Sony uses to measure battery life – only using a MemoryStick PRO Duo card not SD, no card in slot 2, ambient temperature 25°C, shooting Fine quality JPEG only, shooting one frame every 30 seconds and turning the camera on and off every ten shots, and not having GPS active. Needless to say I shoot raw, back up to a second card with JPEG, and have GPS active. That’s why I bought the camera…

d600-a99fronttop

The economical Nikon D600 is a direct competitor, despite rabid claims on internet that the 99 is ‘professional’ and the 600 is ‘consumer’. They are both semi-pro models but the 99 probably has a better shutter mechanism and a higher precision body. The Nikon has better image quality and battery life. Both have similar dual card slots, manual adjustment of audio input for video recording, wireless flash options, grip and so on.

d600-a99rear

GPS eats batteries. We’ve got a GPS module for the D600 which runs off the camera’s power, but so far have not had it switched on permanently for a week. Maybe it will reduce the D600 to the same ‘battery every day or two’ as the A99. The Canon 6D is the only other DSLR made with built-in GPS. Unlike the A99, the 6D does not turn off its GPS when you turn the camera off. Result? The 6D drains a battery in four days, flat – dead flat 0% – if you just switch the camera off and leave it in your bag with the GPS symbol showing. You have to go into a menu and turn off Enable. At least the A99 does not draw on its battery at all when switched off, regardless of settings.

d600-eos6d

The EOS 6D compared with the D600 – it’s smaller, lighter, and built to a far more consumer-level standard with minimal controls. But like the 99, the 6D has GPS on board, and as a ‘first’ in this field it includes WiFi, which is not just file transfer. We used a free iPhone app to view, focus, adjust settings and shoot remotely and wirelessly with the 6D (EOS Remote). This is bound to win substantial sales.

You need deep pockets in two senses for two extra Sony batteries (£136) or the add-on vertical grip at £299 plus two batteries (not included). The first option will keep you going without GPS about as long as the Nikon on one charge. If you are travelling and using GPS, be prepared to change and charge one battery daily.

Another reason for this short battery life is the electronic viewfinder. Unlike any optical prism finder, it uses as much power as shooting video. Even if you turn the camera off every time it leaves your eye, the typical length of time needed to compose and follow subjects will add up. I do not have review enabled, and I rarely ‘chimp’ because one big plus side of the Alpha 99 – as you will learn – is the near 100 per cent success rate achieved by its metering and focus. If you use the rear screen for composition instead of the eye-level finder, you can extend battery life by 16%.

Sony must be commended for sticking to the same battery format used by all larger body models from the Alpha 700 onwards. I do have half a dozen spares but of course, many are now getting old and barely manage 150 shots in the 99. What Sony must do is to take the advances made in lith-ion production and create a higher capacity NP-FM500H. Third party makers have been able to boost their clone batteries to 2000mAh (I’ve bought two and they are non-compliant with the chargers and clearly don’t deliver what they claim…). Sony’s battery should match Nikon’s similar size at 1900mAh, even if the EVFs now standard across the Sony range will always eat twice as much power as a regular DSLR.

The EVF dividend

Would-be Alpha system professionals and advanced amateur users face a future of electronic viewfinders. The good news is that at photokina 2012 Epson showed a prototype with twice the resolution of the current 2.3 million pixel ceiling, and in five years most current complainers will accept that an EVF can be as accurate as any true groundglass screen ever was.

We tend to forget that after autofocus arrived focusing screens lost their visible granular or laser-cut structures unless you deliberately specified a type intended for manual focusing. Plain old groundglass has a ‘dot’ all of its own because it does break the image up. Minolta’s Acute Matte screen was like a superfine microprism field. The new Epson developments come so close to being as fine as this kind of screen, visually, that you might be able to fool someone into believing it was not an electronic finder.

While the A99 finder is excellent, it falls a touch short of this. It is absolutely identical to the Alpha 77 in every parameter including virtual window size (the magnification figure given by Sony of 0.71X compared to the A77 1.09X is all down to using a 50mm lens on both for measurement). Eyepoint is identical despite the slightly different overall design of the eyepieces and the size of the rubber surround. If there’s any improvement, it lies in the illumination range and contrast control of the OLED unit which has been given one additional user control, colour temperature. You can make the finder warmer or cooler in colour independent of any picture style or WB adjustment.

This is a good example of where the EVF’s great clarity in low light pays off – an ISO 3200 image taken hand-held where a tripod was not appropriate, using the Sigma 12-24mm which has fairly strong vignetting. To see and align the geometry of the shot (bottom cropped off) was much easier on the A99 than it would have been on an OVF camera. Click the image for a full size file.

In full sun, the finder appears very dim compared to any good optical finder. In overcast light, it’s a good match. As the light fails or you move indoors, the EVF shows substantial benefits over optical systems. After dark, it can make accurate composition easy instead of almost impossible.

Here, the A99 has the edge over the A77, NEX-7 and all predecessors even including the NEX-5n and presumably the 6 which I haven’t tried. The larger sensor’s better high ISO performance together with its pixel count keep the coloured noise at bay for another stop or two lower light levels. This coincides with an important transition. The kind of indoor artificial light level where the A99 remains very clean using an f/2.8 lens is typical domestic light – brighter than restaurants, not as bright as stores and malls.

Anyone using the A77 will confirm that the 16-50mm f/2.8 lens brought a real benefit in this sort of lighting despite its other failings, by improving the finder experience. Combine the A99 with a good fast lens like the 50mm f/1.4 and you get a relatively natural view of the world after dark.

The A99 returns the auto eye start sensor, which switches between rear screen and EVF if you have that function enabled, to below the ocular instead of above it as on the A77. This makes viewfinder attachments work without blackout glitches, including Sony’s 1.15X eyepiece magnifier, which for me enables a full view of the screen and a truly impressive finder size.

Ergonomics and control

One of the benefits of the EVF is that you don’t need to use the rear screen at all. The Quick Navi interface developed more or less from A700/900 Quick Navi has to cope with a bewildering number of pictograms and readouts, ranging from a full histogram to digital spirit level, and a complex AF setup. With the help of carefully repositioned buttons, it succeeds. I’d say that the A99 has the best user interface I’ve seen on an Alpha since the 900. The top LCD display panel is much richer than the basic one of the 900, and does not deserve some of the criticism levelled at it for duplicating stuff you can see on the rear screen. I work with the rear screen permanently turned to face the body, unless I am actually employing it for composition or image review. The top LCD provides vital at a glance info about manual or metered exposure settings, ISO, state of ± override, battery power, drive mode, WB, file type and image remaining count.

It is, however, blank when the camera is asleep. Later in this review I’ll be comparing the A99 with the Nikon D600, which we now also own and use alongside it. Nikon’s top LCD shows some basic info (shots remaining) all the time. But it’s interesting to note that Sony gives you the correct information when Nikon does not! Both cameras have two card slots. You can set both of them to work in overflow mode, fill one card, then the next. Nikon shows you only the shots remaining on the card in use. Sony shows you the total. The Canon 6D LCD also goes blank when the camera is turned off, except for showing a GPS symbol to warn you about leaving this battery-eating function Enabled.

a99-modedial

The Mode dial has three memory positions, a Tele 10fps (1.5X crop) position, panoramic, Scene selection, Intelligent Auto, PASM and a separate Movie position. You can opt to lock the Movie button out except when the dial is set to this.

Another similarity is the mode dial, locking on all three cameras. Here, Sony goes for a more purposeful central locking action making it a little harder to adjust the dial. They also cram more on to the dial, including the invaluable feature of Memory 1 2 3 positions (as on the 900). There’s a special movie mode which not only prevents accidental movie shooting, but when used allows shutter, aperture and ISO to be set. The range for this is exceptional, you can film at 1/8,000th shutter speed if you really want to break rules.

a99-mainbuttons

The right hand buttons include Fn, your access to Quick Navi on the screen or in the EVF. There is a new AF Range button which I simply don’t seem to need – I wish this could be customised to become a SteadyShot On/Off button, something I need to do far more often when working with a tripod.

The A99 has a total of 19 operating buttons, some of which have only a single use such as LCD illumination or Playback. The manual identifies 18 primary default functions plus the Silent Controller, of which more later. One button, Fn or Function, accesses Quick Navi and its 23 adjustable settings many of which have multiple choices. Fn can direct access 18 functions outside Quick Navi.

a99-custombutton

Here is where the Custom function button has been moved to – under your left index finger, where the flash pop-up button used to be. Slightly pointless wording on the bright orange anodised lens mount bezel lets you know this camera is not actually aimed at working professionals.

The Menu button accesses six main menu tabs. Still Shooting has four menus covering a total of 20 parameters. Movie Setting has two menus and eleven adjustments. The Custom menu has a huge depth, with six menus covering 33 functions some of which in themselves cover other buttons – five of the dedicated buttons on the body can be assigned any one of 35 functions or behaviours, including their native marked use. The Playback menu has two tabs, with ten parameters. The Memory Card Tool menu also has two tabs and nine functions, needed because you can choose where and how to save raw and JPEG images and movies.

Only the Clock Setup menu remains its usual two-entry basic form. The main Setup menu has four tabs covering 24 settings or actions. If you want to try adding all this lot up, before even investigating the complexity of settings within some aspects like Picture Style, you’ll realise there are thousands of different exact ways in which an Alpha 99 can be configured.

Canon has always had a secret weapon whenever anyone failed to get the expected good results from their camera – ‘ah, you didn’t set it up correctly…’. Now Sony has the same rather weak excuse. Not setting the camera up at all should result in successful images. No buyer should experience Default Setting shortcomings out the box. Setting it up expertly should lead to wonderful, perfectly tuned, almost-impossible-to-get-easily images.

And, I am glad to say, if you get an Alpha 99 out of the box and never touch a single one of these adjustments it is more than likely you will get perfect images. That is because unlike most DSLRs, the Alpha 99 actually works like your eye. It focuses and exposes as effortlessly as you do and you can see far more clearly, through the EVF, what is happening to exposure and focus as you prepare to shoot.

The EVF looks great in dark conditions – no coloured noise like the A55 and A77 generations, as the sensor is so noise-free. This is an in-camera ISO 1600 JPEG, click to go to the original full size file. It’s not bad at all.

Real-world performance

As I’ve said, we have been using the Alpha 99, Nikon D600 and Canon 6D side by side before I started writing this review. I did not have the 6D present when making colour-checker tests on the A99, A900 and D600.

Shirley has used Minolta/Sony since 1980, when we first took over the Minolta Club. Before that she used Praktica (as many students did), Pentax and then Olympus. The OM system was her preferred camera for its size and weight, and the exceptional viewfinder.

Well, after over 30 years using Minolta then Alpha, she’s finally departed from the system because of the change to EVF. Unlike me, she finds EVF view uncomfortable. The Alpha 700 was a great camera but sensor technology moves on, and she happens to be a regular abuser of long focal lengths and low light. The A580 has proved good but the very small optical finder has been an issue from the start. The Nikon D600 with 28-300mm VR lens may not be her ultimate ideal camera – we’re planning to try the Pentax K5IIs with 18-250mm, as that has a very good large optical prism finder. But Sony is now out of the picture and we suspect that she’s not alone. However good EVF technology becomes, some users will never feel comfortable with it.

One reason is the need for perfect accuracy in adjusting the dioptre. Optical finder cameras have a certain latitude, always best with exact adjustment, but remaining sharp over a small range of error. The A99 EVF does not have any latitude. The dioptre is set in clicks, and one click either way puts the OLED display visibly out of focus. If your eyesight changes a lot or you move between spectacles and the naked eye frequently, you will need to make constant adjustments to the dioptre.

The first thing we noticed when reviewing a few hundred raw files taken in  similar conditions with the two cameras is that Nikon’s auto-ISO implementation on the D600 behaves very differently from that on the A99. The Sony metering, especially in Program mode with Auto ISO and wide potential range set, prefers the lowest ISO acceptable for the focal length in use and the available light. Nikon’s system will select higher ISO settings, and smaller lens apertures, very readily.

The Nikon meter is also calibrated out of the box to be generous in exposure, possible because the separate metering system is more influenced by light sources or high contrast and prone to big shifts in auto exposure with minor adustments to composition. At any given ISO, the D600 was often giving double the actual exposure – half of this doubling due to overexposing a bit, half of it due to Nikon’s different calibration of ISO.

dynamicrange-a99

Not only does the A99 have strikingly accurate auto exposure when confronted with very difficult conditions (Sigma 12-24mm shot above covering from deep shade to a white waterfall in sun), it also has 14-bit raw files with generous shadow detail and highlight recovery headroom. Click image to open a larger (not 100%) view.

dynamicrange-histogram

Here is the histogram and totally neutral adjustment set shown in Adobe Camera Raw before fine tuning the shot above to improve the brightness and clarity of the shaded areas. Note the excellent shape of the histo without top or tail clipping.

The A99 meters exposure off the actual shooting sensor, using a 1200-zone colour sensitive matrix and intelligent bias towards single or multiple active AF points. In practice, it proved almost bullet-proof. Anyone who can remember the consistent off-sensor exposure of the old Konica Minolta A2 will appreciate the new Sony EVF and NEX models alike. They simply meter with far better consistency than any camera which uses a separate metering sensor. Of course this can also be said of Olympus, Panasonic and all mirrorless cameras. But they don’t all have the amazing 14-bit raw files and 12 EV normal ISO step dynamic range of the Alpha 99.

When we processed the raw files, Nikon’s ISO 6400 was less noisy than Sony’s despite the very similar (not identical) Sony manuactured 24 megapixel FF sensors. The difference is a little more than we would expect from the 2/3rds EV light loss caused by the trans-flective SLT mirror. The remaining difference seems to be down to Nikon treating a gain which Sony would call ISO 4000 as one labelled 6400, but giving exactly the same exposure Sony would give at 4000. This is not very accurate, as depending on the actual ISO setting the discrepancy ranged from less than 1/3rd of a stop to around 2/3rds, but seems to increase at higher ISO settings. Thus Sony has an apparently clear disadvantage at 6400 or 12,800, but the camera is actually giving half the exposure.

Here are some small samples which, when clicked on, will lead you to our full size set of JPEGs which can be pretty large. These files compare the A99, A77, A900 and D600 at two ISO settings only – 100 and 6400. All are auto exposed under identical conditions using matrix metering, so the cameras have been allowed to give whatever exposure and apparent ISO they would do in comparison. All have been processed using identical settings with Adobe Camera Raw 7.3 – Camera Standard profile (Sony Alpha 900 profile for A900), Linear, default sharpening 25/1/25/0 and no noise reduction at all.

A99 at 100

A99 at 6400

A900 at 100

A900 at 6400

D600 at 100

D600 at 6400

A77 at 100

A77 at 6400

anglescreen-85mm-100th6p3-640

The Minolta 24-85mm at 85mm and f/6.3, 1/100th at ISO 640. A perfectly clean file, critically sharp though only one third of a stop down from wide open. Click image to view a larger (not 100%) version. The quiet shutter and articulating live view screen enabled this natural study.

Although the Nikon lens used was a consumer grade optic the £800 28-300mm VR, when it managed not to misfocus or produce a strange reverse-VR blurring due to Shirley’s initial failure to delay shooting by a tiny amount to allow the lens to settle, often produced slightly sharper results than the 1999 Minolta 24-85mm I chose to use on the A99. Subsequent tests show that the Nikon sensor seems to have a slight fine detail advantage over the Sony at ISO settings around 200-800 with Adobe Camera Raw 7.3. While Canon’s 20 megapixel 6D sensor has a similar high ISO performance, detail sharpness was generally similar to the A99 rather than the D600. Cumulative issues with AF performance, lens field flatness and sensor planarity also led to some Canon images having zones of unexpected defocusing. The A99 has no such problems and I believe it has the same very high standards of sensor flatness and body precision as the A900.

Comparing the A99 with the A900, there is a clear one stop gain in ISO related performance above 1600. But at 100 to 400, the A900 from raw has a kind of fluid quality – the pixels seem to merge and give a luminous yet crisp image. The A99 never really produces this special quality at low ISO, though at the expanded 50 setting it’s impressive. Perhaps there’s an element of illusion in this, that the exceptional optical image through the A900 finder conditions me to see the final picture differently.

The A99 has the same generous 30-lens AF Micro Adjustment calibration as the A77, though I found no need to calibrate except a very small adjustment of -2 for my 28-75mm f/2.8 SAM. I’ve not yet used every lens I own. It also corrects geometry and CA in-camera unlike the A900, for JPEGs. One benefit over the Nikon D600 which does the same is that the EVF shows the true geometry and composition after the corrections are applied. Optical finders can’t do that. This does impose a small extra load on processing and if you are after the fastest overall response should be turned off.

The A99 has one of the best 1080/50(60)p HD video functions on the market. For the bitrate involved, it captures detail three times as good as you would expect. It tends towards a soft compression like the Canon 5D MkII, not a highly detailed frame level image like Nikon’s video. You can stream pure HD video to external recorders without compression, monitor live sound with headphones including provision for lip-sync or echoless real time latency, control the stereo mic/line input with manual gain, and use the Silent Controller during filming for various functions.

silentcontroller-a99

The Silent Controller is a free rotating dial with a push button in the centre allowing you to set its function before each use if you want. The default use is AF-C, AF-S, AF-A, MF, AF-D and there are no clicks. It is silent, for use during movie shooting to change exposure or audio volume (etc).

This controller is placed where the former C/A/S/M focus mode switch was on the 900. It has a central button you can press to reassign a function to it before use. The external knurled collar is turned with one finger, without click stops. By default it changes focus mode. A typical assignment for this during video would be audio volume.

The 99 can auto-crop to APS-C 10 megapixel files when DT lenses are fitted, or if this is set by menu (needed for non-Sony lenses like Sigma DC or Tamron DiII). It can do this for raw files, resulting in a smaller raw, for raw+JPEG, JPEG only and for video. The Smart Teleconverter works in JPEG-only or video modes, giving 1.4X or 2X (4.6 megapixel) stills. In conjunction with the rear controller you get a further continuous zoom range to 4X for movies (native resolution to 3X, interpolated between 3X and 4X, with a very smooth electronic zoom effect). The EVF remains pixel-sharp at 1.4 or 1.5X, but anything more and you can see that the sensor image is being enlarged and is softer.

The 1.5X crop is also enabled if you select the 8fps or 10fps higher speed continuous mode, using the mode dial, rather than the 6fps full resolution mode using Drive settings. The actual sequence burst rates are effectively identical to the A77 and not any better in practical terms than the 4-year-old A900, which unlike the 99 can shoot 5fps Fine JPEGs without a break until the card is full or the sensor overheats. The 99 can only manage 18 frames before slowing. The use of a single Bionz processor with SD storage in the A77 and 99 seems to have been a backwards step, the dual processor of the A900 was better able to sustain a data flow to the fast UDMA CF cards accepted by that camera.

a99-carddoor

The dual card slots – SD and MS Pro Duo upper, SD only lower. The lip surrounding the card slot area is an effective waterproofing channel and the metal spring plate gives the card door a firm, unstressed action.

The 99 does away with CF despite its 900-like body size. Instead, a dual SD drive very similar to that in the Nikon D600 is fitted. Even the spacing of the two slots, and the way the upper card sticks out a little more than the lower, is the same. But the Sony has the ability to accept Memory Stick PRO Duo cards in Slot 1 as well as SD. I find this convenient, as I use a classic Dynax camera strap with a card wallet fixed to it. This can hold spare MS Pro Duo cards, and by chance, the slots for these cards also fit the plastic cover for the new hot shoe exactly – there’s nowhere else to put it, and it matters. The latest MS Pro Duo HX cards offer maximum performance, better than SD UHS-1.

But in the end, despite all its problems, the Alpha 99 simply turns in a better success rate on my sort of subjects – landscapes, street scenes, people, events – than its rivals. The metering is more accurate, the AF is either as good or better, the image quality at high ISOs is a touch lower, the GPS works well, and of course the sensor-based stabilisation is a total winner. Sigma sent a 35mm f/1.4 in Canon fit to test. This lens is quite incredible, and transforms the Sigma offering. It’s so sharp even wide open that the smallest degree of camera shake makes a shot look inferior. I forgot that with the A99, there’s hardly any situation I can not tackle hand held and get pixel-sharp results. I used speeds like the 1/30th or 1/60th on the Canon 6D and lost the exquisite jewel-like edge sharpness of the Sigma. I’m just so used to getting every single shot usable and not thinking about whether a lens is stabilised or not.

This scene didn’t work well with the un-stabilised Canon 6D – I was too cold, and hanging on to a support with one hand while standing half way up a steep muddy slope, with two cameras. SteadyShot worked well on the A99. Click the image for a full size link. ISO 1600.

The new shoe

The new Sony Multi Function Accessory Shoe looks a bit like a rather crude old single contact hot shoe, and its central contact does indeed work to sync with any plain ISO unit. It can be used with Skyport and PocketWizard or generic flash wireless triggers, and I’ve also checked it with Wein infra-red. The three holes round the main contact are locking-pin holes, so beware third party generic adaptor makers. This is a good candidate for getting adaptors stuck.

alpha99-shoe

Under the leading edge of the ‘old’ shoe there is a recess, a horizontal slot not unlike the accessory slot fitted to the first generation NEX cameras. Its gold plated contact strips are very fine, and if this slot was left exposed by failing to replace the cover, it’s easy to see that dirt of moisture could get in. Unlike the NEX slot, there is no built-in spring loaded cover to shield it.

This interface provides the flash connection – duplicating the entire contact set for the iISO or Minolta i-shoe known as the Auto Lock Accessory Shoe by Sony, which is now gone. A small adaptor ADP-MAA is provided with the camera to convert from the new ‘old’ shoe to the Minolta standard. It is as slim and firmly fitting as they can make it, but still felt a little vulnerable with an HVL-F58AM mounted on top, especially when the camera was held vertically. A new flash unit, the HVL-F60AM, has been released for the A99 and in line with current trends it incorporates an LED video/modeling light. This aims forward to double as an AF illuminator, and can not be bounced.

flashadaptor-base

The adaptor ADP-MAA shown with its connectors and the small spring loaded pins and ‘ball bearing’ centre contact to fit the new Multi Function Accessory Shoe.

Audio input is also handled by the shoe for microphone units compatible with the Cyber-Shot/HandyCam/NEX models using the new shoe. Since this shoe also appears on the NEX-6 and the DSC RX1 where it is the only way to input audio, there is some hope for a line/mic module. It is not needed by the A99 as this has a 3.5mm phantom powered stereo jack input, under one cover with a similar headphone output. Both input and output volume levels can be controlled on screen.

alpha99interfaces

This change means that there are now three generations of hot shoe in the Alpha system, and five different shoe or accessory mounts in the Sony still camera systems of the last few years – there’s the Sony CyberShot shoe in two generations used by DSC F series and the R1, the inherited Minolta Auto Lock shoe, the NEX Smart Accessory Terminal and this new Multi Interface Shoe. To say this is unwelcome would be an understatement, but the shoe provides a long-term solution for future development and if you want to create a Christmas tree, it’s still backwardly compatible.

Its 24 contacts cover two different levels of power supply to accessories, audio in and out, flash or wireless flash control and connection, add-on GPS unit (the 99V includes an internal GPS, the plain 99 does not), add-on WiFi module, and EVF or HD monitor feed. We should expect to see a WiFi module and a monitor screen option, while the regular HDMI output can simultaneously send uncompressed video to a recorder. What we don’t know yet is whether the future WiFi module will be as clever as Canon’s built-in WiFi and do more than just send files from the camera. If it has an Android/iOS app for remote viewing and shooting it will be a winner.

The flash system remains with the original Minolta digital wireless TTL protocol as found from the HS(D) guns onwards. There is no built-in flash on the A99 and thus no built-in wireless control. The HVL-F20AM fold-down mini flash made for the A900 as a wireless trigger works perfectly on the 99 with the ADP-MAA but it’s no way as neat. The one benefit is that for direct use, it’s raised a little higher and casts less lens hood shadow while causing less risk of red-eye. We would guess that a new version will appear soon enough. I’ve tested it both directly and bounced, and as a wireless controller.

Flash exposure with the A99 has been exactly as expected – not a wildcard – but short of testing every flash in every configuration, I can’t guarantee against the kind of overexposure found in the A77. All I can say is that my tests, made within the expected range of units using appropriate ISO settings and apertures, have worked well. I do not use flash often outside the studio, and given the performance of the A99 at high ISO settings I doubt I will ever want to.

Any reverse adaptor for the shoe – to allow the HVL-F60AM to be used on Auto Lock shoe cameras – will not of course provide functions other than flash. The Auto Lock shoe doesn’t have any of the other contacts.

My reservations about the Multi Interface Shoe are only that its connector strip looks delicate and each contact has a very small physical contact area. Even the Auto Lock shoe has had its problems with occasional contact failure due to wear and tear or foreign matter.

a99-connectors

There is, of course, also a studio flash PC sync cord connector, threaded, under the same cover as the DC Power Supply connector. Below these is the Remote Cord connector, and between them, a GPS symbol marked next to the loudspeaker. Sony does not give advice which way up to hold the the camera for the best GPS reception. With the Canon 6D, lying on its back face up is the recommended position.

The focus system

Because of the Smart Teleconverter, APS-C auto crop and video crop/zoom functions the A99 needs an AF module perfectly suited to the APS-C or smaller areas. It gets exactly that – the same module as the A77 uses, and that one starts off with leeway to work in Smart Teleconverter mode.

It’s a rather staggeringly tiny 6 x 12mm AF array, one-ninth of the frame area. Imagine the frame divided into thirds both ways and the entire 19-point, 11-cross point phase detect array fits within that modest central rectangle, but forms more of a horizontal ellipse shape within it. No AF points reach into the corners of that central patch.

The manual is deceptive because it frequently shows the AF area and points out of true scale to the overall frame.

a77-AFarea-ona700

This is why you come to photoclubalpha – we do the stuff the others don’t notice! Above, though rather crudely taken due to needing to hold an A55 with 30mm macro up to the eyepiece of an A700 aimed at the rear screen of the A77, is the actual AF module of the 77 (faint squares) overlaid on the AF markings of the A700 finder. This may be out by enough to make the overall AF zones similar , but it looks to me as if the A77 doesn’t quite cover the same extent as the A700, even after allowing for the 96% A700 finder view.

a99-AFarea-ona700

This is the same technique applied to showing the AF zone of the A99. As you can see, it’s the same module as the A77, floating in the middle of full frame. It doesn’t come anywhere near to the extent of the old A700 module, or the A77 in its cropped format frame. It does not even reach the ‘rule of thirds’ favoured points for composition. Coindidentally, the Phase Detect AF-D zone with its 102 tiny sensor spots occupies almost exactly the same area as the square formed by the A700’s top and  bottom horizontal line sensors and triple vertical groups.

sonyafrepresentation

Here is how Sony generally represents the AF zone within manuals. This is not a graphic dealing with AF, and there is no need to show the AF zone larger than it actually is relative to the rest of the display. From the A99 manual.

Sony may have saved some money by using exactly the same module as the A77 but it’s just not adequate. You can compose shots where not a single part of the subject you want to have in focus touches an AF point, and moving subjects can move beyond the active zone all too easily. What was needed was twice the AF area – 1.4X the linear dimensions at least – even if that meant adding further non-cross points.

This module works with all Alpha lenses, from the earliest Minolta screw drive to the latest SSM and SAM. It works down the EV-1 (minus one), the same as Nikon’s 39-point D600 module and four times less sensitive than Pentax’s latest SAFOX design or Canon’s equally tiny central AF cluster in the 6D. It’s still better than AF used to be considering its ability to work optimally with relatively small apertures.

The marked AF-D area is a larger 12 x 12mm square, and when one of the compatible lenses is used and the appropriate AF-D mode invoked with subject tracking, a square array of 102 on-sensor PDAF focus assist points becomes active. I’ve described the result as a fireworks display, though that depends on the lens and subject. Groups of these points can light up, alongside the main focus points, in brief recognition of the subject.

As to whether it works, I can’t say. It turns on and become visible. Does it make any difference? I use both incompatible and compatible lenses. I can’t say that I have been able to spot any real difference in performance, certainly nothing I can observe or measure. All I see is the points light up after the focus has been acquired; they seem often enough just to confirm what area surrounding the chosen focus point is also within depth of field at focusing aperture.

300mm-500f9-iso800-APSC

To get this shot, the surfer had to be kept within the AF area of the A99. I was using a Sigma 70-300mm f/4-5.6 Apo Macro DG lens (which has replaced my Sony 70-300mm f/4.5-5.6 SSM G – reasons of superior sharpness, light weight, size and close focusing prevailed over the superior colour rendering and bokeh of the big G lens). Click picture for a larger, but not 100%, size.

surferfullframe300mm500thf9iso800

Here’s the full frame, 300mm, 1/500th at f/9, ISO 800. You can see I was keeping the central AF point on target because in this case, there was going to be plenty of spare megapixel estate to crop away. I took 115 shots of surfers, mostly single frames but some short maximum speed bursts between 2 and 5 frames, in nine minutes. Not one is out of focus even when the surfers came in closer to the camera at speed. But… they are all within that small one-ninth area of the frame which features the AF grid.

This 102-point zone is also too small, and the wrong shape. It’s a cut-cornered square. I am shooting 2:3 or 16:9 ratio stills or movies. I am not shooting square images. There is a reason, and it is also the reason more lenses do not work with this on-sensor phase detect focus assist. The pixel pairs on the sensor with their differentially angled microlenses use the image forming ray cone in a specific way to detect front or back focused phase shift. To do so, they demand a specific exit pupil geometry and need to be placed relatively close to the lens axis. This on-sensor array can not be extended to cover the entire sensor, or even to extend to a echo the image format more accurately.

In theory, on-sensor PDAF should be extremely accurate, and should be able to work with contrast detection (as it does on other sensors using this technology). But on the A99, they don’t have that function. You can not opt for hybrid contrast detection with on-sensor PDAF; the system is designed to augment the SLT-fed main PDAF module only.

I’ve already observed that the perceived maximum resolution (microcontrast and detail sharpness) of the A99 does seem to be lower than the D600, despite Sony’s zonally graded low-pass filter which I can confirm does improve the performance to the edges and corners for wider angle lenses. The on-sensor PDAF zone is sufficiently populated and large to have some effect.

In case you think I’m talking up Nikon’s AF module over Sony, don’t… the D600 certainly did not focus any more accurately, quickly or reliably than the A99. Both AF modules are small in coverage, and both cameras do have an APS-C crop function including raw file saving and faster burst capture. The thinking has been alike. Ditto for the Canon 6D. That’s got a pitiful APS-C area module with only 11 AF points, ten of them plain old linear f/5.6 the centre one a mere f/5.6 cross with vertical linear f/2.8 (slightly inferior to the Alpha 700 of 2007 in all respects except low-light sensitivity). Canon doesn’t even have the excuse of APS-C or 2X capture modes, you can’t fit any Canon APS-C (EF-S) lens to the body let alone get the optional crop functions enjoyed by the D600 and A99.

So, here’s a new bunch of full-frame choices, and all three turn out to have small-area AF modules. It is Hobson’s Choice.

The A99 can never be rescued from its tiny principal AF zone by firmware updates and owners will just have to live with it. Things could have been designed differently; they were not. The same module is just about right in the A77. It’s lost in the big image of the A99.

Shutter response

One of the more surprising things about comparing the humble Nikon D600/Canon 6D with the advanced Sony A99 is the sound and feel of the shutter action. Both rivals have a low 1/4,000th maximum speed shutter, but are still capable of flash sync similar to the A99 (1/200th for Canon, 1/250th for Nikon, 1/250th for A99) which means curtain travel speed is similar and they simply chose not to permit a narrow enough slot to achieve 1/8,000th.

The D600 with its complete mirror up and down, twin shutter blind and recock action feels and sounds sweeter than the A99 which has no mirror to move and no first shutter blind. In fact, it’s louder and the dB peak for a very brief spike is about twice the volume of the A99 or the A77. But some recording with sound analysis reveals that the A99 sounds ‘louder’ because the actual duration of the sound is almost twice as long, and divided into two distinct clunks.

d600-a77-a99-200th

The D600, like the A77, has a normal single-shot shutter sound of around one sixth of a second, as you would expect from cameras which can achieve 6fps or something close. The Alpha 99 has double that. I timed it at over 300ms, and if first curtain mechanical mode was used, well over 400ms.

It took me a few days and some digging to find out that the 14-bit readout on the A99 only applies one shooting mode – single shot. Any other mode you select, including Lo 2.5fps continuous and all multishot or JPEG only modes, uses 12-bit readout from the sensor. This was already documented in the literature about the A99, but what Sony omit to say is that the 14-bit mode causes a noticeable pause between the shot being captured and the restoration of EVF viewing. This pause is around 1/10th of a second longer in single shot mode than the blackout which happens during 2.5fps or the first frame of any faster sequence, and totals 200ms or 1/5th of a second.

single-versus-lo

single versus lo

Above is an .mp3 link of single frame 14-bit capture compared to 12-bit capture in a Lo sequence setting. The green rectangle on the graphic indicates the extra time used for 14-bit processing; the overall time of the longest sound is over 400 milliseconds – nearly half a second is a fairly long duration for the audible cycle of any modern camera’s shutter actuation.

Thanks to the detailed analysis of audio recording using Amadeus Pro, followed by frame by frame time analysis of an iMac movie clip showing the actual LCD screen blackout period, I have been able to see this ‘dead period’ of blackout and image processing is longer than the entire shutter action of the A77 or D600; indeed, the shutter actions of the A99 surround this hiatus. The card writing light comes on a millisecond or two after the live view blacks out. The action of the shutter curtain being recocked, which accounts for a substantial part of the overall shutter noise, only happens at the end of the 1/5th second pause.

Short of a firmware upgrade, there’s nothing you can do about the extremely slow single-shot shutter cycle or the interrupted finder view if you want the extra quality which comes from 14-bit raw capture. Nikon offer you a choice of 12 or 14 bit, compressed or uncompressed raws. Sony does not offer a choice and makes the bit depth specific to the way you shoot. There is no doubt at all that both raws in single-shot mode, and Extra Fine Quality JPEGs created in this mode, show less noise when adjusted to an extreme. 12-bit capture is fine for lower ISOs, in good light, with correct exposure.

a99-14bitprocessing

The 14-bit raw file has great flexibility for shadow and highlight adjustment from raw without losing colour values or subtle tones. I’d rate it as one of the best raw file formats I have worked with, at normal (100-800) ISO settings. No local dodging has been used above to enhance the backlit scene – just what amount to curve adjustments.

The 3fps Lo motordrive setting was easy to use for single frames, with a light touch. This caused half the finder blackout duration and no more than a 290ms total sound envelope (including all reverberation – the main sound is not unlike the 180ms of the D600 or A77). It didn’t matter what file size and type I recorded or what card was used. This setting always produced the shutter cycle, and sound, I would have expected the A99 to have.

Having observed the way the camera works, I’m afraid I am now rather too aware of it. It makes me appreciate the Alpha 77’s much faster, sweeter action and even consider the A900’s noisy clack with affection. One effect of the longer shutter cycle is to make the relatively quiet sound – 4dB quieter at peak than the Nikon D600 which also has a higher and more intrusive pitch – seem ‘louder’ than it actually is.

What is interesting to me is just how few users, when I asked for information or tests of their own cameras, were really able to hear the differences or see the blackout period. I can thank Gary Friedman for being able to confirm my findings – he could understand exactly what I was looking for. And thanks to several posters on Dyxum forums, whose concerns were with the image quality of 14-bit versus 12-bit, for providing the information I need to put the facts together and realise that no amount of adjusting settings was ever going to make the A99 share the brief blackout and sweet shutter sound of the 12-bit A77.

Gary uses wireless flash a lot. I don’t generally use flash at all except in the studio. Gary has observed delay in wireless flash triggering which is just as long as the entire shutter cycle, and made a great short video which explains this problem:

http://youtu.be/eHrBcT51oE8

I’m not sure if this is a definitive test – there are other trigger flashes which can be used and I’d like to see the times from the HVL-F60AM, F58AM, F42AM and so on. But it indicates that it’s not just me who does not use wireless flash. Nor do Sony’s systems designers and technical team!

The LV dilemma

Sony’s camera line is now totally committed to using the sensor as the viewfinder. This means that whatever performance they can pull from that sensor, it will always be a quantum drop lower than the same sensor used in an optical viewfinder camera. The level of read noise is heavily influenced by the sensor temperature, and continuous live view makes the sensor heat up.

Sorry, I can’t measure it. No doubt someone equipped with the right tools could measure the temperature of the silicon after 15 seconds, a minute, ten minutes or any other period and also allow for ambient conditions. Sony’s handbook reveals that most performance figures and presumably most pre-production tests assume an ambient temperature of 25°C. By my standards, that’s extremely warm, even as an indoor temperature.

There are warnings that the camera may shut down if video or continuous shooting result in an internal overheat. I’m just not going to be testing the A99 to that degree. The best I could do was to set it to ISO 6400 and the highest video bitrate, and leave the camera running in low light, to ensure the highest gain levels.

I’m fairly sure all of the Nikon D600 noise level advantage can be put down to not using full-time live view, and the effect of the SLT mirror. The Sony sensor is almost certainly just as good overall, give or take whatever effect the phase detection pixels may have.

a99-base

Battery – left hand as seen (right hand grip). To the other end, a narrow covered port allows connection of a vertical grip without cannibalising the battery already fitted. The resulting three-battery configuration is the only way to get real stamina for a busy day’s uninterrupted shoot, especially if you use GPS.

LV and EVF lead to very short battery life, and this may be exaggerated if you want to do very long exposures.

So there is the ultimate dilemma – the Alpha 99 is a master of all the functions and features you could want just so long as you want EVF with it. If you don’t, then the Nikon and Canon alternatives will not only be better choices for you, they will save you into the higher hundreds of pounds or into four figures in dollars.

My choice

The Alpha 99 is currently the full-frame camera I’m working with and will stick with until the next generation arrives.

I sold my Alpha 900 shortly after the Alpha 99 arrived. I regretted it straight away, but that is just down to an attachment after four years of familiarity, and a false reassurance that this is such a solid and simple camera it would have lasted me for life. I do not make videos often, but when I do in future I want full control over direct audio input as audio overdubbing from a separate recorder is something I have found very tricky to handle (at least in iMovie, which is what I use).

I didn’t sell my Alpha 77 despite the poor performance in low light, and the lack of the audio level control. It’s far too useful, having 24 megapixels in an APS-C crop, rather than the 11 produced by the A99 crop format. Also, the general colour and grading of video matches the A99 well enough for the 77 to be a second camera. After we bought the Nikon D600, I found the colour and contrast sufficiently different to mean mixing video from Alpha and Nikon was not an option. It also has manual audio input gain – but we can’t team them up. For much the same reasons I have kept my NEX-5n and my Alpha 55.

Could I work professionally with the Alpha 99? Yes. I’m confident it would not let me down in any situation I’m likely to encounter or set up – I do not shoot sports or hard news, events or conferences. Future professional use would be likely to be public relations, corporate brochure, annual report, advertising, industrial and environmental, executive portraiture, products, architectural, building works, stock travel and landscape. Frankly, anything I could once have shot on a Hasselblad can easily be tackled with an Alpha 99.

Despite this, I would be very happy if Sony revived the highest end optical prism DSLR in future. An Alpha 900 quality version of the D600 would have been perfect. And I do not think I am alone in showing some regret for the apparent end of the single-lens reflex Alpha.

– David Kilpatrick

Footnote: elsewhere, the usual comment has been made that I’m wrong to compare this with the 6D and D600 because the A99 is competing with the 5D MkIII and D800. We have a D800E and may acquire a second one. It’s not competing with that; the D800, and especially the 800E, appeal to a different market where using 36 megapixels counts more than several other factors. It is also not competing with the 5D MkIII, which is locked into a huge Canon professional userbase as the one undisputed mainstream body. Nikon has a fragmented position; the D600 isn’t on the right level, the D800 offers benefits many users do not need and loses advantages they want to keep, the D700 is low resolution, the D3s the same and the D3X is priced beyond its specification. Nikon professionals I know all say what they want is a D700 body (and shutter, etc) with a D600 sensor – they would then have a camera at precisely the same level as the 5D MkIII. They would have the one easy no-doubts choice to make the same way Canon users have.

Like it or not, the Alpha 99 is actually competing with the 6D and D600, and it does not matter to the market that some aspects of its construction and specification are closer to 5D MkIII ‘build’. Sony is doing something in enthusiast-level photography right now that it has done well in the past in television and audio, positioning its pricing as a premium consumer brand. The DSC-RX1 specification and pricing tells you everything you need to know about how Sony sees the market.

a99processor

 

This is why the A99 doesn’t even really compete with the older A900. Single Bionz processor (that word saying ‘Dual’ refers to the memory card slot) where the 900 had two – and 14-bit data to process. The SD cards, even Class 10 UHS-1, also represent a bottleneck in data transfer. Using the highest end MemoryStick PRO Duo overcomes this. Photographed on the Sony stand at photokina.

Sony NEX-7: the high-end hybrid

The Sony NEX-7 is not a NEX at heart. It’s part of the rest of the Alpha system in every respect except its lens mount, and even that can be converted with a choice of two adaptors. A NEX-7 with an LA-EA2 phase detection autofocus adaptor is little different from an Alpha 65.

The NEX-7 does not accept any of the smart accessory terminal add-ons common to the NEX-3 and NEX-5 models, because it lacks the accessory slot. That means it does not use the same flash models, or the same microphones. Instead the NEX-7 has the iISO Minolta flash shoe, accepts all the flash accessories from the Alpha range and is capable of wireless remote flash operation.

Its external microphone, if required, is also from the Alpha system or any suitable 3.5mm stereo jack connected model mounted on a bracket or an accessory shoe adaptor.

Packaging sequence

Click this for an enlarged view of the opened box, which was full of white bits. Though sealed and brand new, the NEX-7 purchased needed a good dusting and blowing before removing its front cap and fitting the lens.

You can’t see here, but when the cap was removed from the body there were specks of the same white packaging filler on the matt black baffle between the lens mount and the sensor. But, once blown clean, the NEX-7 proved remarkably free from dust-on-sensor problems. It’s one of the least dust-prone cameras I have ever used, despite the exposed position of the sensor which is not even covered when lenses are changed or when the camera is turned off.

The dust on the camera may also be seen here. The eyepiece surround is supplied separately packed and sealed. It is not soft rubber, and makes pretty sharp contract with my brow, almost demanding to be shoved into my eye like an eyecup, with specs removed. I found the finder good to use but started removing my glasses permanently when working with the 7 outdoors.

Battery and stamina

Given the relatively short battery life of any camera using an EVF as sophisticated as the Sony OLED device, I feel it’s a pity they did not go the whole distance and have a larger right-hand grip housing the 500-series lith-ion used by the 77, 900, 700, 5xx and other larger more ‘professional’ camera bodies. The little 1050mAh 50-series cell shared with the lesser Alpha 55, 33 and all NEX models is stretched to the limit by a 24 megapixel EVF camera. Third party 1300mAh versions don’t actually seem to last any longer.

What’s interesting is that losing the flapping mirror and mechanical focus and aperture operation, found in the earlier Alphas, has not doubled battery life. You would imagine all this heavy mechanical stuff would drain power fast, but in fact the electronic alternative of live view, with the sensor active all the time feeding a digital viewfinder, proves far less efficient.

Because the NEX-7 uses an external power option with a dummy battery (a Canon approach I have never much liked, always preferring dedicated DC input) it would be possible to design an add-on base with a better power source. But as with other NEX models, the SD card slot lives in the battery compartment and such a ‘power grip’ would either need to be removed to change cards, or incorporate more adaptation to provide a relayed memory slot.

Despite its odd position between the Alpha and NEX ‘systems’ and the clear drawbacks of some aspects of its design, the NEX-7 is a compelling camera. It’s got some of the handling qualities of a classic screw-thread Leica, from the left-hand eye position to its overall dimensions and a reassuringly solid feel. It does not surprise me that so many owners enjoy fitting Leica lenses of all eras; they look correctly proportioned, and in the case of late designs for the CL/CLE they were designed to fit a body which may even have inspired the 7.

 Missing the point

The hammering taken by the little battery probably accounts for why no GPS was built in to the 7. This must have caused many buyers and owners much frustration, especially if their previous camera or other camera happens to be an Alpha 55, 65 or 77. The NEX-7 can make these redundant for travel and landscape work, but those are exactly the times you want GPS. The NEX-7 is not so much use in the studio, or for action sports, or domestic shots… the times when you do not need GPS!

This is the one mismatch in the specifications which has caused me problems in making decisions about what to use when, and when gear to keep for the future. It has left me unable to part with other cameras despite the fact that I don’t really need them; and it leaves me obliged to take my A55 or A77, instead of the NEX-7, on expeditions where the NEX-7 might be more convenient. In the end it is what has persuaded me to part with the NEX-7; I have ended up using the Alpha 77 all the time instead.

The other omission in the NEX-7 is in-body stabilisation, not just sensor-movement but the pixel-tracking electronic variant used only for video in the A65/77. This prevents the 7 from being a true alternative to the larger DSLR/SLT models even when the LA-EA2 adaptor is fitted, unless you are very lucky and can find a compatible Sigma OS lens from the period before Sigma decided to drop optical stabilisation from Alpha mount products. It also limits its use with many manual classic lenses.

What you do get is a bigger sensor area used for HD video than on the 77 or 65. It’s interesting that this was possible, as video readout can demand a limited choice of source pixel dimensions for best quality. With a bigger source frame, perhaps the NEX produces better video, but it’s not a difference I can detect.

It would be wonderful if it turned out that the processor and firmware of the NEX-7 allowed Sony to issue an upgrade to add pixel-tracking electronic stabilisation (even with the inevitable crop of video to 1.87X factor). Is there any reason why pixel-tracking can not be used instead of sensor shift for stills? Others are using it. It certainly can work for viewfinder stabilisation with an EVF, as it does with the A77.

Great features of the NEX-7 – that ‘real’ hot shoe, the pop-up flash, the twin control drums, and the EVF – are let down by lack of GPS and video stabilisation for manual lenses, both offered by Alpha SLT models.

Cynics will believe that Sony could have implemented all this, but preferred to limit the NEX-7 and avoid cannibalising Alpha SLT sales. I think they simply didn’t think it through, or realise how the NEX-7 would change the profile of the whole NEX system to the point where some photographers could consider using nothing else. And they may have needed to use the processor power in other ways.

The killer button

While the first reaction to NEX-7 design tends to be delight at the provision of two unmarked, identical control wheels on the top right rear edge the new owner quickly discovers there is one tiny button which changes the reliability and usefulness of the camera beyond all else.

Seen here with the pop-up flash raised, showing also the infra-red remote front facing sensor and the on-off switch surrounding the shutter release, is that very important small unlabelled flat button.

That is the flat black button to the right of the shutter release, unlabelled. You could assume that its ability to invoke a series of the most useful screen menus, to change key settings in a manner close to Sony’s Alpha 700 QuickNavi, would be most praised.

But no. It is the ability of this button to LOCK the camera setting controls – to disable operation of the TriNavi control wheels (rear multi-way optional, and two top as a minimum). Just hold the button down for two seconds, and a message appears saying the settings are locked. That means that if you have set Aperture Priority, f/9, ISO 200, no exposure over-ride then the camera will stay that way until you unlock it and change things. That just needs another two-second pressure, something you are not likely to do by mistake.

The handy tips are not optional (more detailed ones are). The rear screen is bright and very sharp. I fitted a GGS-type glass screen surface shortly after the product shots were taken. That movie record button is a bit of an issue, see later comments.

You do get continued access to the exposure over-ride and ISO change even when the controls are locked, but only with enough deliberate action to prevent your clothing or your camera bag from doing what it does so well on the NEX-5n – setting several stops of underexposure. It rarely goes the other way for me. I’ve had this happen between two shots without apparently touching the camera! The rear controller which handles this function is so light in its action, and indeed the dials of the NEX-7 are equally free.

This single point about the NEX-7 puts it ahead of the NEX-5n and all earlier NEX models for me, despite the fact that NEX-5n images are often better in low light, and all previous NEX sensors seem to produce rather smoother sky noise at minimum ISO.

What it does not lock is the other killer button – the movie shoot red button, placed to catch your thumb or the camera strap or anything else passing. It is ridiculously easy to start shooting video accidentally; it happens often enough on all NEX models, but the 7 takes it to a new extreme. It needs to be included in the LOCK function with the next firmware update, or its operation changed to a two-press action; first press changes to movie mode and crops the finder view, second press starts filming; half pressure on shutter release when in pre-shoot mode returns immediately to stills mode.

It’s surprisingly difficult to hit the movie the button with the camera at your eye when you want to. For a button which is so easy to hit by mistake, it scores top marks for being hard to find when you need it.

The AVCHD-2 file structure makes the situation worse, by putting the camera into video directory mode if you accidentally record a second or two of video. If you don’t immediately hit the delete button and remove this, but instead start shooting stills, it is a bit tedious to get back into the video playback mode and delete the unwanted clip. The fastest way to get there is to shoot another brief instant of video, then playback and delete this and your previous accidental clip; menu diving to change between still and movie playback takes much longer.

Hitting the movie button to shoot short clips, like these taking using the 18-55mm OSS lens and high quality 1080p, is not always easy as you must move your secure firm thumb-position on the grip to press it.

This is a failing of the dual directory structure, which maintains an entirely separate ‘database’ for AVCHD movies, preventing you ever playing back mixed stills and video or accessing both at the same time for file management (delete!) purposes.

While the Lock/Unlock function does improve the handling of the camera, it has mysterious lapses. I’m still trying to work out exactly when and how my ISO setting is changed on a locked camera, nearly always to something unreasonably high. It doesn’t happen often but when it does, it frequently manages to be the next frame after one shot I have taken normally, and done nothing more than drop the camera from my eye and lift it again.

The sensor dilemma

ISO 1600, natural light, handheld – no noise reduction at all when processed from raw using Adobe Camera Raw. A full size version can be downloaded by photoclubalpha subscribers.

The same with 25/50 noise reduction for both luminance and colour settings in ACR. A full size version of this is also available to members.

This brings me to the question of the 24 megapixel sensor. As with the Alpha 77, it only provides true advantages when used at or close to its lowest ISO setting. On the NEX-7 this is 100 not 50, and the overall performance of the NEX is ahead of the SLT design through the range of ISO up to 16,000 maximum. It’s not a doubling of speed for the same noise level, more a matter of getting slightly better images at the same setting. However, using the Alpha 77 ISO 50 setting puts it ahead of the NEX in practice.

The strength of any AA filter is determined by two factors, its diffracting or diffusing power, and the gap between the filter and the sensor. If you increase the gap, the strength of the filter must be reduced; put it very close to the sensor surface, and a strong filter is needed.

Today’s designers prefer a weaker filter and a larger gap, as this reduces the effect of dust on the filter, a major cause of user dissatisfaction. Anyone who has used a camera such as the Canon 5D MkII which has a very weak AA filter very close to the silicon will know the problem, but that camera takes the effect so far you can often see moiré patterns too. The AA filter is too weak, and video makers often get the camera customised expensively, replacing the front glasses over the sensor with a stronger low-pass.

A second effect of a filter closer to the sensor is that at the corners, the stronger diffraction structure may be further strengthened by the angle of the rays passing through. The distance from filter to sensel is greater with rays at an acute angle than those passing through on axis.

The strength and distance of the filter are also linked to the density of the sensels on the sensor (pixel pitch). The 16 megapixel of the NEX-5n and 24 megapixel sensors of the NEX-7 have subtly different AA filter assemblies. This leads to some lenses performing better on the 5n, some on the 7. Whatever the complex mix of underlying reasons, there are many who would love to see the robust and versatile 16 megapixel sensor find its way into a NEX-7 body because they want to use third-party manual lenses such as the Voigtlander 12mm or 15mm Leica mount designs.

From my point of view, I like the 7. It seems to have a weaker filter and maybe a greater gap between glass and silicon, if the dust-on-sensor results are anything to judge by. I have not noticed any serious colour shift with, for example, the 16mm pancake lens but my experience with the lens is so different from many others. I rate it as one of the better f/2.8 85° angle lenses around, not the “it sucks” offering often implied.

Even after downsizing and crunching for the web, the moiré on the flyscreen of this diner on the run up to the Mojave desert can be seen. If you are a photoworld member you can access a full size, level 12, AdobeRGB version without sharpening or NR and see just how well the 16mm has performed at f/10, a sensible working aperture.

NEX or Alpha?

Apart from issues of stabilisation and GPS, the choice between NEX-7 and the similarly priced Alpha 77 involves a few other considerations.

First of all, there’s weatherproofing or ruggedness. The 77 is a very tough, splash or rainproof camera with a ‘skinned’ body, externally finished to be fairly resistant to minor scuffs. The NEX is a bare metal body without any special attention to dust or moisture proofing.

Then, there’s the duty cycle. The NEX has the familiar basic 1/4000th shutter, admittedly with the electronic front curtain option that doubles its expected life if you use it all the time. The 77 has exactly the same option but based on the 1/8000th shutter only found in top-end Alphas 700, 850 and 900. That gives it probably the longest expectation of shutter life yet in any Alpha, time will tell.

There are a not many functions on the 77 not found on the NEX, but there’s one big physical difference – the rear screen.

Inarticulate viewing

The NEX-7, a major redesign compared to the 3 and 5 series, sticks to exactly the same rear screen frame and hinge setup as those with a minor adjustment to angles and a slightly tougher construction. This is not one of the best design decisions made by Sony, and has drawn some users to other makes.

The articulated screen of the Alpha 77 is not just good for viewing portrait compositions at waist-level or aiming ahead to see yourself when doing a self-timer group or making a video ‘to camera’. It is good for not using at all! Nearly all the time, when not wanted for a specific purpose, the screen of my Alpha 77 stays reversed to the camera. It feels more comfortable, it never lights up when working indoors or draws attention because of its glow, it does not get marked by my hands or face. Same goes for my older 55.

The NEX-7 screen, in contrast, is permanently exposed and also limited in its movement. It is not good for vertical compositions, and it can’t be used for viewing from the front. It also can not be protected by facing towards the camera.

How different the 7 would be, had the screen been designed like the Alpha 77! It would have felt like a pure rangefinder camera with the screen reversed and I’ve considered getting or making some kind of cover just to hide it away. The surface of the NEX-7 screen is very easily marked, and I picked up a single visible scratch line on it within a week. A month later I finally obtained a GGS MkII type glass screen protector (the model labelled NEX-5C is correct) and felt able to use the NEX freely in the real world, instead of treating it as a fragile object.

I use the angled screen occasionally on the NEX-7 or 5n, but don’t use the angled viewfinder of the NEX-5n with accessory EVF. Most times I need an angled screen, it’s because I want to hold the camera overhead, at ground level or at waist level. Not up to my eye.

There is one button press which doesn’t exist on the NEX series, but exists on all the SLT models – switch between EVF and rear screen. With auto switching set, the EVF takes over when you raise the camera to your eye, but the rear screen continues to operate after the camera is returned to strap-hung position. The only way to prevent it from continuing to operate is to use the power save delay setting, and reduce this to the minimum ten seconds.

You can go into the menus, and switch the camera to use either the EVF only, or the LCD only. But there’s no over-ride if you do so. Set it EVF only, and the EVF is the only way to see the menus needed to get back to using the LCD. Set it to use LCD only and there is no quick way to use the EVF, you’ve got to menu dive.

There is not even an option which enables the LCD to cycle, through its display modes, to OFF. The closest I have got is to set the LCD for information display only and turn the brightness down to minimum manual. What I’d like to see is an EVF/LCD button, just as on the A77, because the NEX-7 is basically the same kind of camera. I don’t have to use that button on the A77 as I just reverse the screen, and flip it round when it’s needed.

Though there are many custom functions you can assign to buttons, EVF/LCD switch is not one of them. This may seem like nitpicking, but it is an omission that wastes battery power. Using the ten seconds power save timing still leaves the sensor and the display/s operating far too long. There is no state, unless you use the EVF only option, where the camera shuts off as soon as you take it away from your eye and take your finger off the shutter button.

I  find it significant that without taking a single picture, while writing this section of the article only, checking the operation and changing menu settings the battery in my 7 has dropped from 33% to 17% power. The EVF uses more power than the LCD.

Shooting speed

Though the NEX-7 has a minimal shutter lag (20 milliseconds, or 1/50th) between pressing the shutter and achieving image capture, this figure is deceptive. The camera may not be ready to have the shutter pressed, indeed you may not even be able to see and compose your quickly-observed action shot before it is too late.

This may be why Sony has made the LCD/EVF aspect so restricting, and why the default settings use Auto switching and leave power on for 20 seconds before sleep. If you use these settings, the response of the EVF is much faster than it is when the EVF only is selected. The camera is already operating, feeding an image to the rear screen, and switches this image rapidly.

If you are already framing and viewing, shutter timing can be very precise. Indeed, with many subjects I’m so used to SLR-type delays I missed the moment by firing too soon – with the electronic first curtain, the camera sound happens AFTER the shot is taken, which is deceptive. But if you lift a sleeping 7 to the eye and expect to grab a street shot, you’ll be frustrated. It can take two, three seconds or more to get it alive, viewing, exposure set and focus happening. Bike and board action show at Knott’s Berry Farm, Tamron 18-200mm.

The slowest setup is to use the EVF only and set the image review to any time (it does not matter whether it’s for the minimum 2 seconds or longer). If you enable image review, you’ll be locked out for a second or so from taking another image in fast succession, and you’ll also see the image in the finder. This is a case where the functions of the EVF and the LCD need to be separated. The image review needs to be able appear on the LCD and never block the viewfinder or the shooting pipeline.

For fast shooting, disable image review entirely and leave the EVF/LCD set to auto with the power save mode set to longer than the gap between any two shots. I don’t think you should ever need longer than the 5 minute setting and for me one minute is enough. You can set up to an hour but I don’t see much point in this, unless you were waiting and watching unpredictable wildlife with the camera on a tripod.

Though the evidence is nothing more than observation, setting focus peaking may also very slightly delay shooting response, and using a single central focus spot actually seems slower than selecting the 25-point multi area AF (but that so often picks a foreground zone and misses your target).

When you get the NEX-7 set up correctly for maximum fast response and minimum possible interruption or delay, it’s a fast enough camera to use. Much also depends on the lens; the 16mm f/2.8 is almost instant in response, the 18-55mm OSS is hesitant, and the 18-200mm Tamron likes to wake up, stretch, yawn and then focus. Apparently the Sony 18-200mm behaves much the same way.

And then, what counts

OK, I’ve spent a lot of time looking at why a camera which could be nearly perfect falls just short, partly through small details of interface programming and default settings. Most reviews don’t even go into this stuff, apart from describing what can be found in the manual (which you don’t get in a physical form, only as a PDF on the supplied CD).

In practice, the NEX-7 produces stunningly good pictures at ISO settings under 400 and is definitely at its best with either 100 or 200 set. It is after all a high resolution camera, and in old-fashioned terms it is the Kodachrome 25 or the Pan F of the digital world.

A studio shot to show the hazards of electrical fires, with smoke detector. These are not contrived subjects, both ‘energy saving’ bulbs fizzled out this way (one hanging down vertically, the other upright in a large lamp) and the NiMH cell got hot enough to burn its covering and split it, in a charger. The NEX-7 at ISO 100, with a 50mm f/2 Russian tilt-lens, reveals a level of detail well beyond most full-frame DSLRs.

As we have found out repeatedly with DSLRs, there is little point in having expensive lenses and high resolution if the image is not correctly focused. The great strength of contrast-detect AF, and magnified assisted manual focus, is that both offer near-perfect focus regardless of aperture related shifts. You can check directly through the viewfinder by setting AF to DMF, which will automatically magnify the image if you touch the manual focus control of the lens after AF is confirmed.

The 24 megapixel sensor does not reward apertures smaller than f/11; I normally set f/8 or f/9 with the 16mm f/2.8 or 18-55mm, and use f/11 with the Tamron 18-200mm because the reduction in unsharpness towards the edges outweighs any loss of ultimate resolution.

The EVF serves perfectly well if you stick to the kind of subjects the NEX-7 is ideal for. While it has some great functions like Face Recognition including registering up to eight ‘known’ people, that sort of function is mainly for people who buy the 7 because it’s the best and looks the part. It is not really a great people camera despite the Smile Shutter and the convenient built-in flash. The NEX-5N is better because people tend to hang around in low light, indoors as well as out, in the evening as well as the day. The 5n has a near two-stop advantage in real terms for effortless high ISO quality.

Mono Lake, windy summer day; the NEX-7 is great for subjects like this at ISO 100. But so was the Box Brownie… and so is almost every camera made today.

Nor is any NEX model the ideal choice for pets, kids, school sports or the usual domestic stuff. It’s actually a better camera for creative still life, macro, architecture, landscape, fine art found studies, formal portraiture and of course top grade 1080/50-60p video. Unlike DSLRs (even SLTs) the 7 can focus very smoothly during video if the subject changes distance. No camera can be quieter in focusing or stabilisation.

If you do decide to stretch the NEX-7 to the limit, I’ve found that as an example the 70-400mm SSM G when fitted using the LA-EA1 contrast detect focus adaptor works well. Focus is achieved surprisingly quickly and far more accurately than on DSLR bodies without Micro AF adjustment. Still, the lens is almost useless. Beyond 200mm, an unstabilised hand-held tele looks worse through an EVF than I can ever remember with optical finders. You really notice the jerky image and if you use the AF-A DMF function with focus peaking for a magnified manual fine tuning at 400mm, it’s like trying to hand hold a 5000mm lens. If you want to play with this, you need a tripod, and a good steady one at that.

There is no point in having a the best focus or lens quality if the image quality lets you down. I like to use Auto ISO, and find that the NEX-5n for example holds its quality acceptably right up to the high 3200 setting which you can’t limit; it would be so much better if you could stop it going over 1600, too. The NEX-7 also has an Auto range which you can’t customise. It will run from 100 to 1600, and for whatever reason I find it tends to be at the extremes of the range. Far too many images are at 1600, and 1600 simply loses too much detail. With a little care, raw conversion and reduction in image size to under 10 megapixels equivalent can yield an impressive result. But I don’t buy a 24 megapixel camera in order to get 10 megapixels.

I find I use the NEX cameras a lot in the evening or at night, when I don’t want a full sized SLR style camera on me. That makes low light, high ISO performance important. Here’s a shot in San Francisco at dusk, just enough light to hand-hold the 16mm at f/4 and ISO1600. By reducing the  image size to 10 megapixels after processing from raw, I get a very acceptable noise-grain structure and excellent sharpness (below).

The greatest contrast is with a camera like the Canon 5D MkIII. I was using this alongside the NEX-7 for a while, and maybe that colours my view. At 1600, 3200 or 6400 the 5D MkIII is still useful for quality images. The NEX-5n does well up to 1600 and is better than the 7’s 1600, at 3200. I was also using the Nikon D4, and various other cameras. Even the Nikon D800 for a while with its 36 megapixels. The NEX-7 needed to be locked down to ISO 800 or under to make use of the full 24 megapixel native size. I would have liked to have limited its Auto ISO range to 100-400, or 200-800.

Why 200? The camera does not have in-body stabilisation. This has been another issue for me, with all NEX bodies. The rest of the world goes mad for legacy rangefinder lenses, legacy manual vintage SLR lenses and similar stuff. I don’t. I bought a couple to try at the longer end and realise from the magnified focusing view that if you fit a 200mm, you will need to use 1/1000th shutter speed or even shorter to get any kind of sharpness.

The Alpha 77 has control over auto ISO range, and has SS, and has in-sensor video stabilisation which by using pixel tracking can cope with any lens you fit even if not identified to the processor. Pixel tracking would have been invaluable in the NEX.

This shot may look superficially OK, but it was hand-held at 0.6s (2/3rds) with the 16mm. I could almost guarantee that with two frames taken, I would get a sharp one doing the same with the Alpha 77 and 8-16mm Sigma. With the NEX and no anti-shake at all, this was the better of two frames taken with careful support though hand-held. Below, 100% clip from the centre. I very rarely ever have to reject images for this reason. The most serious NEX competition, Olympus’s OM-D system, has sensor stabilisation which works with any lens – just the advantage Alpha users have always claimed. Knotts Berry Farm, museum.

Ultimately, the NEX-7 demands both stabilisation in the lens used (which the 24mm f/1.8 CZ and Sigma 19mm and 30mm lack) and constant attention to manual setting of ISO to secure the optimum settings for image quality. You can not even set a slowest shutter speed for Auto ISO.

When you get it right, it’s hard to beat. Turn the viewfinder ‘show effect’ off, so you get Auto Gain in the EVF, set the camera to ISO 100, set a manual exposure for the brightest shot you are likely to encounter and just shoot raw. Push process anything underexposed.

The Tamron 18-200mm lens

The NEX-7 with black Tamron 18-200mm, and Alpha shoe fitting HVL-F20AM flashgun mounted.

I tried two different Tamron 18-200mm lens on Tamron’s stand at Focus on Imaging, one black and one chrome, on my NEX-7. There seemed to be a marginal difference in which side of the image was not quite as sharp, between the lenses, but VC stabilisation could account for this and it was only visible wide open at 200mm.

I bought one shortly afterwards at the show – apparently the last one there – and the performance was much as expected – as good at 18mm as the 18-55mm kit lens, as good at 200mm as the Sigma 18-250mm OS we use on the Alpha 77. It is as good at 200mm as the 55-210mm SEL lens I tried during the NEX launch event in 2011. When occasional shots show unsharpness towards one side for no obvious reason, I’m pretty sure that this is a result of stabilisation decentering a group. Nearly all stabilised camera and lens combos give me occasionally ‘soft on the right’ results, maybe it’s down to my personal camera shake tendencies.

The lens was so useful that I stopped bothering to use the 18-55mm at all, and ultimately sold that. If you are going to have an unpocketable camera, it might as well be a little bigger and have the range of lens you need. I did have to carry my HVL-F20AM flashgun to use on the 7 with this lens, as the pop-up flash is barely able to avoid shadows from the 18-55mm (lens hood removal obligatory). The Tamron 18-200mm – and Sony 18-200mm to an even greater degree – will cast a huge shadow from the pop-up.

This is not just a minor shadow. Lens shade on at 18mm, you have a mound of shadow occupying a third of the frame to the left. You get a shadow in shot right up to just before 200mm with the hood on, and up to around 40mm with it removed. In practice, you can’t use the pop-up safely at settings below 50mm and you can’t use the lens hood if you do.

The HVL-F20AM gives no shadow at all even at 18mm with the Tamron with the hood fitted, and having separate batteries it does not further exhaust the hard-worked NEX-7. Folded down to the off position, it sits neatly above the Tamron lens body. So the recommendation has be Tamron or Sony plus this accessory flash, if you want to go the 18-200mm route.

The Tamron may have an acceptable close-up ability when set to 200mm, but at 18mm it lags behind the 18-55mm and way behind the 16mm pancake. If you are used to the 16mm’s ability to focus on subjects barely a hand away from the front rim, the 18-200mm’s inability to be used for this kind of wide-angle close-up will frustrate you. I would never consider leaving the 16mm behind – or its ultrawide and fisheye converters.

If you set the camera to use auto correction for vignetting, distortion and CA it appears to recognise the Tamron and to apply appropriate adjustments. I don’t know if this is because the Tamron is an authorised SEL lens, and Sony have data embedded in the camera firmware, or because Tamron is used the same identity as the (very different) Sony lens and it’s pure chance that corrections are similar.

I saw several children running towards this scene, but these were the last two. I’ve retouched a badly positioned child and a notice board out of the shot. The NEX-7 with 18-200mm Tamron was only just fast enough in operation to enable this shot. Anything much more spontaneous was rarely caught on time.

Whatever the case, if you want fast viewing and focusing and only shoot raw like me, disable lens corrections in firmware. It is difficult to judge or measure exactly what happens, but I find the 18-200mm tends to have a seek and find action when focused to start with which makes it slow, and that a further ‘wobble’ is created by the corrections as they are applied to the live image. It’s almost like a small auto zooming effect, depending on focal length, and if you zoom the processor may apply a new correction.

The slowest overall combination involves using ‘Effect On’ in the live image, AF, Face Regnition, Object Tracking, Auto ISO, and auto exposure setting like A or P, stabilisation on, and lens correction. This is not specific to the Tamron, but it tends to show the slowing-down effect most.

The NEX-7 will work fastest if you turn all this off and work manually, with manual ISO, manual focus. But of course you can’t really do that in practice. And, if you have used any EVF Sony camera, you’ll know well enough that startup times in tests are irrelevant. You are just as likely to have a second wasted as the viewfinder switches from burn-out blank to normal exposure as you are to have an AF lens do its yawn and stretch routine before finally ambling down the stairs to get breakfast.

Having recently used the Canon G12, G1X and Fujifilm X10, I can confirm that there are substantial benefits to optical finder operation as long as the camera is genuinely able to autofocus during a hasty shutter press. Sony has yet to achieve this, and it does not surprise me that the useful 16mm optical finder designed to pair up with the pancake lens does not fit the NEX-7, which lacks the smart accessory connector. So you don’t have that option with it as you do with the 3 and 5 series. The 16mm optical finder could also be used, reasonably well, with the 18-200mm locked at 18mm (the Tamron lens has a lock).

The comparison in size between the 70-400mm Sony G lens and the 18-200mm Tamron, the Alpha being shown fitted to the 7 via an LA-EA1 adaptor (which does enable it to focus, very accurately and not too slowly).

Comparing A77 use to NEX-7 use, a superzoom on the A77 focuses in the time it takes to press the shutter, with phase detection AF, but the A77 finder is every bit as slow as the 7 thanks to the 24 megapixel sensor and the way it provides your live view. I’d have to rate the NEX-7 plus 18-200mm as the slowest combination I have ever used, and if this camera had been provided to me for review in the guise of a compact with a built-in zoom of this range, I would have dismissed it as unusable from the start.

Such is the appeal of the camera with 18-200mm that I never felt that way. There are a few other ‘likes’ to help, like the Tamron’s filter thread of 62mm matching my Alpha 77’s CZ16-80mm so it can share one polariser.

Finally, like the Sony 18-200mm the Tamron has its OSS and focusing both optimised for video. The slow and occasionally odd behaviour of AF for stills may be due to the smooth, damped AF during video which hardly ever hunts off-target and always transitions between planes without jumping or overshoot. The OSS during video is amazingly stable, and both functions are so close to being silent they make other systems seem crude. This did not prevent focus from eventually drifting for no apparent reason during some long clips.

This video was shot at a photo trade show using the NEX-7 and 18-200mm, hand-held and walking while shooting. The refocusing and stabilistion can both be judged from it.

There is none of the noisy IS you can find in a Canon lens, and when comparing the sound picked up that system’s new 5D MkIII with a 70-200mm IS L lens against other options, the NEX-7 with Tamron 18-200mm emerged as the quietest of all possibilities. It was almost matched by the A77 with an SSM lens, but the sudden and fast focus responses given by the PD-AF systen during video both caused loss of focus with sudden changes, and more audible operation.

NEX-7 with Tamron 18-200mm and Rode Pro Videomic with ‘dead cat’ wind baffle.

The NEX-7 with this lens is uniquely good as an HD camcorder. Even if you bought the lens and never used it for still work, it would be the lens which completes the camera as a decent spec video rig. The same applies to Sony’s own 18-200mm. This isn’t to say you will not encounter some unusual effects if you choose to shoot freehand, to pan with subjects or zoom with AF and OSS active. Occasional distortions or apparent jumps in position of the subject can happen. It’s unfair to criticise any system for this, as the solution is to disable stabilisation and AF, mount the camera on a fluid head tripod, lock in manual exposure settings and shoot like a pro.

Tamron updated my lens under warranty to solve a definite problem with shooting panoramas (the original batch of lenses simply didn’t work – areas of blur and bad stitching). The service is handled in Germany not the UK. It eliminated the problem.

Parting with the NEX-7

Despite everything, after my final two-week trip using the NEX-7 and Alpha 77 side by side (or for different situations) in California I made the decision to sell the 7 and Tamron. I had not been able to afford the camera and the zoom to start with, especially so soon after investing in the Alpha 77. Based only on the three months spent with the NEX, it didn’t make many exposures; a mere 1500 or so. That’s because of the way I use NEX cameras generally. They are my pocket notebook, my out-shopping, business travel or evening out camera.

With the Tamron, or indeed the 18-55mm which I’d sold almost immediately in order to finance the Tamron, the 7 is not a pocket camera or even an under-jacket camera. Whenever I was in an unknown location – a stop on the road, a wildnerness view, a beach with no sign – I used the Alpha 77 and waited for a GPS lock before shooting. I wear an old Lowepro Sideline Shooter belt-pack bag which leaves hands free and places no strain on neck or shoulders, and having first packed it with NEX-7, filter, batteries, cards, 18-200mm, flash, two converter lenses and 16mm I found it was just as happy with A77 and 16-80mm, 8-16mm and 70-300m Sigmas and accessories. It weighs more but proved just as convenient.

Both the NEX and the A77 went through twice as many batteries as Shirley’s Alpha 580 despite not taking as many shots, per camera. EVF cameras are power-hungry. Both definitely lost me shots I wanted to grab and would have secured with a conventional DSLR or a faster compact. Having a shutter response time of 0.02 (1/50th) second means little if you have an aperture-focus-exposure cycle taking seconds when the camera is raised to the eye and first pressure is taken on the shutter.

Both A77 and NEX-7 also went through my stock of 16GB memory cards, shooting raw only, rather too quickly. For the A77 I’ve now bought a 32GB. You do not need to do much shooting to fill up cards with a 24 megapixel camera.

Having packed up the 7 and sent it to its new owner, I very nearly bought another. It’s a camera like that. When you consider that extremely fast response – so fast that unless you retrain yourself, you will anticipate action too early – and the amazing low light AF ability, high resolution, controls and handling, video quality, high grade shutter, near-silent operation… there’s nothing else like it. Then you remember that the A77 and A65 match nearly all aspects that matter except the ‘pure’ mirrorless design and compatibility with all kinds of optics.

I had already owned a NEX-5n with accessory EVF and other kit, and despite liking the quality delivered, decided that this was not the pocketable solution either. For a while I had both together. I’m reverting to a first generation NEX-3 taken in part payment for the NEX-7, which will be happy with my 16mm; I’ve checked some of my 2010 14 megapixel files, and find the Adobe Camera Raw 2012 process and new lens profile handling improve them significantly. I guess my argument is that I had considered a Canon G-1X, but remembered that it’s only 14 megapixels, its noise performance is no better than a first generation NEX, it doesn’t do close focusing the same way, doesn’t have wide and fisheye converters, and if anything it’s bigger.

Reverting to a ‘traditional’ old NEX without the flash shoe and auto-gain live preview means I can’t use it with studio flash. But I never wanted to use the NEX-7 with studio flash (AC main strobe) except for the purposes of testing that function. I have an Alpha 900 and an Alpha 77!

So what advice?

Here’s my view. If you do not own an Alpha SLT 24 megapixel camera, or a compact of high quality, the NEX-7 is a star buy. You just have to be aware that this is absolutely NOT the camera for birds in flight, dogs running, kiddies scooting round the living room, sports, candids or street shooting. All are possible and owners have good examples.

It’s a really great buy if you have some vintage short focal length Leica, Contax or similar glass and want to make good use it without spending twice as much on a Fujifilm X-Pro1 or a Leica.

It’s the only camera of its type that can do smooth refocusing during video, silently, maybe 75% of the time. Unfortunately, the 25% when it wanders off focus completely for no apparent reason makes life with AF video not much better than it is with every other unsatisfactory solution. If you shoot video, you’ll get some of the best ever quality 1080p from the 7, but you’ll end up using a tripod with manual focus and exposure for anything beyond casual clips.

The NEX is a cat, so don’t expect it to do dog tricks. Or obey!

Reasons why I am wrong include the 50mm f/1.8 OSS lens which I don’t have. If I had the cash to hand I might have bought one, and who knows? It might have been a compelling reason to stick with the NEX-7. But I’ve got a great 50mm f/1.4 Sony for the Alpha 77. The adaptor LA-EA2, which puts an Alpha 65-style AF module and SLT mirror on to the body to work with Alpha mount lenses, could also have tipped me in favour. But once it’s all assembled, it’s approaching Alpha 77 size without the ergonomics or bigger battery.

You buy a NEX to do the things a compact system cameras does well, like being small and portable, unobtrusive and precise in feel. It happens, uniquely, to beat most DSLRs in two or three aspects – image resolution and quality including dynamic range, versatile lens compatibility, and focusing accuracy whether AF or manual (based on the near-perfect precision of contrast detection or magnified visual with peaking indication).

If you DO own an Alpha 77 or 65, and thus have access to almost the entire feature set of the NEX-7 already, I suggest that your money – the better part of $2000 or £1400 with a zoom like the Tamron – is better spent on reinforcing your Alpha system if necessary, and acquiring a large sensor compact of the new 1X generation. For my outlay I could, admittedly six months after my NEX-7 purchase, have a spare Alpha 65 body and an RX100.

Here are some parting thoughts:

1) Battery Compatibility – the NEX models share a battery size with the Alpha 55, 37 and similar bodies. If you own a 55 without too much investment in lenses, moving to NEX-7 could be neat. I enjoyed travelling with my A55 and NEX-5 plus a pocketful of small batteries charged up!

2) Electronics Break Down! If I really wanted to go with NEX, I’d be better off buying two NEX bodies, an LA-EA2, having one battery type but also a coherent backup. If I really want to major on Alpha a-mount SLTs, my first backup investment should be a second Alpha body. I have that (A55 and A77) but guess what, I risked two weeks travel and shooting with A77 and NEX and never thought to sling the A55 in the case.

3) EVFs suck. They are wonderful, but if all you have is EVF, you miss half your potential. We are keeping our Alpha 580 and even our 700 and 900 for the moment. See also – Electronics Break Down!

4) 24 megapixels is a dozen too many. Most of the time you only need 6 megapixels, sometimes you need 10 or more. Very rarely does anyone need 24, except if they are shooting sports and wildlife, or something where a crop helps. Guess what the NEX-7 is not so good at. When you do need 24 (or even more) you don’t often need a pocketable camera. Note to Sony: RX100 – 20 is probably too many, too.

– David Kilpatrick

See NEX-7 at B&H (if you use this link or our B&H sidebar adverts, or Amazon ads, we do make something – not a great deal, and it does not cost you anything, but it can add up to help pay site costs).

Sony’s Zeiss 24mm f/2 Distagon ZA SSM T* reviewed

The Sony Zeiss 24mm f/2 SSM Distagon ZA T* is probably the best, or equal to the best, in its class. It may perhaps be the best ever 84° angle fast lens ever made for the general SLR system market, and I would happy to pitch it against any of the current equivalent offerings for medium format digital.

The initial journey with the 24mm f/2 was not one of intensive companionship – I am long past the stage of getting hold of a wonderful lens and then shoehorning all my photographs into that lens’s view just because I love the glass. I’ve been through that phase. I remember when I was 18 and my then fiancée (Shirley – still here!) bought me a brand new 35mm f/3.5 SMC Takumar, my first ever multicoated lens as well as my first new boxed product. I shot almost everything with that lens for a month…

A full-frame Alpha 900 study at full f/2 aperture. Check the sharpness in the central – very limited – sharp focus zone by clicking the image for a full size version.

My review of the 24mm appears in the British Journal of Photography for January 2012 but was written in November, and at the end I comment that I do not think I would buy one. Well, between writing that and publication – after returning the test lens loaned to me by Paul Genge of Sony UK – I placed my order. I sold a set of lenses including a 28mm f/2 Minolta RS and a 17-35mm Konica Minolta D to pay for it.

Check current availability and price at B&H Photo Video (opens in a new window will not lose this page).

Why?

It was partly medium format which persuaded me. I’ve been experimenting with MF digital, first using a Hasselblad with a Phase One P20 and then shifting to a Mamiya 645 AFII with a 22 megapixel ZD 37 x 49mm back. Once you put the Zeiss on the Alpha 900, the image quality jumps to match the level of a similar MF pixel count. And without spending into the tens of thousands you can’t match the angle of view at a higher pixel count.

These two cameras both shoot 22 megapixels over a 16 x 12″ print shape (the Alpha 900 being cropped) and both were current in 2008 – though the Mamiya ZD model was shortly to disappear. And the two lenses have similar coverage.

I looked at the corners of my MF shots on a 35mm lens (nearly identical angle of view) – to be clean, they demanded f/11. And then I looked at the corners on the Zeiss, which are even cleaner by f/4. Finally, I considered what Sony may have in store – 36 megapixels on full frame. Everything I’ve seen from the 24mm – including its performance on the A77 and A55 – indicates it will not run out of resolution even if full frame goes well over 50 megapixels.

Then I had the job of looking back over the Alpha 900, Alpha 55 and Alpha 77 pictures taken with the 24mm, and preparing some comparison shots. This was when I realised that my normal line-up of zooms, no matter how good, never got the same from any camera – APS-C or full frame – as this CZ prime. It may be bulky, take large filters, and cost nearly £1,000 but no other solution on any format from NEX through A77 to MF offered the same as the 24mm on Alpha 900. You will, however, be surprised later on to see just how well the tiny NEX 16mm f/2.8 does in comparison when both lenses are stopped down to f/8.

The 35mm 2:3 format shape offers a bit of vertical composition ‘rise or fall’ potential compared to to 3:4 shape of my Mamiya with 35mm wide–angle. Beyond this, the 24mm offers both CD and PD focus with different adaptors on the NEX system, and smooth near-silent AF during video on the Alpha 65/77 and future models. It’s both future-proof and a future classic.

Photojournalism or architecture

Because the 24mm has a fast f/2 maximum aperture, it’s seen as a choice for news, documentary, reportage, sports, and close quarters party or family shooting. Though a little vulnerable because of its size, it does this job well. Unlike tele lenses, any mark on the front glass of a wide-angle like this will show in pictures when the aperture is stopped down. Special care should always be taken of retrofocus and fisheye lenses with vulnerable front elements, my own lens will get a Sigma EX DG 72mm UV filter. Why Sigma? I ran a series of ad hoc tests on filters and these turned out to be just as good as Hoya Pro 1 Digital at half the price, and with better multicoating.

At f/2, struggling with light for a hand-held shot with 1/40th at ISO 1600 on the Alpha 55, the 24mm showed surprisingly clean imaging from the boat to the lights on the cliff top.

Here’s a shot taken at f/2.5, 2/3rds of a stop down from wide open – a sensible aperture to give that hint of extra depth of field and improved optical performance. Click the image to view a full size A55 image on pBase.

When fitted to my A55 or A77, the 35mm-equivalent field of view is also a good general lens for photojournalism (what you get is more or less a Fuji X100 equivalent, but hardly pocketable). The performance over the APS-C field of view is so good that working at full aperture carries little penalty at all except restricted depth of field. The geometry and field flatness over the restricted field mean  you could use the lens for artwork copying and get a better result than the 50mm f/1.4 of 30mm f/2.8 SAM macro will produce.

Over full frame, this technical excellence makes the lens attractive to the commercial, industrial and architectural photographer. Whenever you need to apply a strong software correction, focal length figures are thrown out of the window. For example, once the on-board lens correction in the A77 is applied to the 16-50mm f/2.8 SSM lens at 16mm the true minimum focal length equivalent becomes close to 17mm not 16mm.

Hasselblad’s 28mm superwide for its HD series cameras has strong barrel distortion, relying on in-camera and Phocus raw software converter functions to remove it. So while the lens claims to be a 17mm equivalent, that is only true over absolute full-frame 645. On their digital sensors, it’s only equal to a 21mm and the correction means the true crop is more like a 23mm.

A second effect of applying any in-camera or post-process distortion correction is loss of true image pixels. Either you crop the frame after sampling down, or the image is interpolated upwards to fill the frame. Both solutions are far from satisfactory because unlike a fixed interpolation, the value ranges from 0 to whatever maximum is involved (typically between 3% and 7%) and all of this is never a clean ratio.

Above: a sea horizon (the top of the crop is the top of the frame, and it is full width). Top, CZ 16-80mm at 16mm 0n Alpha 77, uncorrected, showing complex wave-form distortion as well as vignetting despite stopping down to f/11. Centre: CZ 24mm on Alpha 900, uncorrected, at f/13. Bottom: 24mm after applying a 2% barrel distortion correction. Click image to view a larger version.

Here the 24mm CZ shines. It really uses all the 24 megapixels of the A900 or indeed the A77, because geometric correction rarely needs to be applied. It has a true 24mm focal length which does not need to be quietly changed to 25mm or 26mm by applying a lens profile. If a 35mm retrofocus AF lens was made for MF digital to this standard, even without the f/2 aperture, it would be hailed as a world-beater. The most that’s needed is a correction of 2% (+, removing barrel distortion) in Adobe Camera Raw and this restores something like a sea horizon near the top of a landscape format frame to a perfect straight line.

No correction is applied here to this full frame 24mm Alpha 900 image – a central horizon, and straight lines which are not parallel to the frame edge, make the 2% distortion (similar to many standard 50mm lenses) no issue at all.

For many subjects, depending on the distance and a ‘rigour’ of the shot (the sea horizon is the most demanding example) no correction at all will be needed. This applies to most interiors, and always to scenes like mountain views or forest landscapes where there is no perfectly flat horizon.

The Alpha 900 is so close to MF digital quality I should really forget the attractions of MF systems. Nearly everything I see from them which impresses me is down to using prime lenses of first quality like the Zeiss and Mamiya 80mm f/2.8 standards and working in a methodical way often using a tripod, minimum ISO, mirror-up operation. Applying the same parameters to Alpha full frame lifts the end result to match – and the CZ 24mm f/2 is a key to unlock that quality.

At f/14, the 24mm is not losing detail sharpness on the Alpha 900 as long as the correct raw processing parameters are applied. To secure this depth of field, f/14 was needed – a medium format camera would require f/27. Holding the camera, viewing and composing this shot were all aided by the ergonomics, weight and viewfinder quality of the Alpha 900. Click image for a full size version on pBase.

This is a dual-purpose or multi-purpose lens. Where the 16mm focal length of the NEX SEL 16mm f/2.8, the Alpha SAL 16-50mm f/2.8, the CZ 16-80mm or SAL 16-105mm all cover the same nominal angle not one of these has the same neutral geometry, even illumination and good corner to corner sharpness at wider apertures. Corrected by software, they don’t have the same true angle and the outer field can become noisy because of extra sensor-mapping gain applied to reduce vignetting.

The size and SEL comparison!

But I would like to show you something surprising. I am a great fan of the 16mm NEX f/2.8 pancake, which is one of the few such lenses made to have a positive (pincushion) simple distortion pattern and a cup not cap shaped field of focus. It is a revolutionary inverted telephoto design of great simplicity, with only 5 elements, enabling the lens to be 16mm focal length yet have a rear node position over 20mm from the sensor – thus avoiding all kinds of vignetting and colour shift problems.

People who don’t understand how to use a focus plane where the corners are focused FURTHER than the centre – the exact opposite of the CZ 24mm f/2 where the corners are focused CLOSER than the centre – do tests like landscapes wide open and wonder why the grass either side of their feet dissolves into blur. Actually all the little 16mm needs is modest stopping down, as would be applied by any professional using a Super Angulon for that matter, to f/8.

First of all, have a look at some lens sizes. I like this shot, as it shows just how big CZ had to make the 24mm to get what they did. It dwarfs the SEL 16mm for NEX and the classic Minolta 28mm f/2 RS:

I’d like you to see the exact comparison between Alpha 900 with 24mm CZ and NEX-5 with SEL 16mm.

This is the A900 and 24mm, entirely uncorrected and uncropped – the building on the right actually does not have a straight wall, don’t be fooled into thinking there’s a sudden burst of barrel distortion! Aperture f/8.

This the NEX with 16mm, corrected in ACR; I’ve tried to keep the camera positions very close but this was real-time shooting and with viewfinder versus screen composition, not so easy. You can see that the 16mm has slightly less true angle of view when corrected but don’t judge from the foreground flower tub, just check the horizontal angle. This is also at f/8.

You can click each image and view a full size JPEG. I have made both of them 24 megapixels, exporting from the NEX to the same size file as the Alpha 900. That may be unfair but you can judge. My opinion is that both the NEX 14 megapixel sensor and the SEL 16mm are underestimated by far too many owners; as far as ISO noise handling goes, the 16mm f/2.8 on NEX is actually as ‘fast’ as the 24mm f/2 on Alpha 900 but that comparison may change with future full frame bodies. As for depth of field, the f/8 shot on APS-C would need to be at f/13 on full frame to match, but in practice both are well covered.

Using the NEX 16mm in different conditions would produce a different result – wide open in a room interior, the corners would be likely to look very blurred. My scene above conforms to the cup-shape focus plane of the NEX lens, and works against the cap-shape focus plane of the CZ 24mm.

Remember as a general rule: barrel distortion = corners focused close than centre. Pincushion distortion = corners focused further away than centre. Moustache or wave form = a doughnut normally of closer focus between centre and corners, but when a full frame lens with this type of distortion (like the 16-35mm CZf/2.8 – or a more extreme example, Canon’s 24-105mm f/4 L) is used on APS-C, you get this doughnut at the corners and more or less have straight barrel distortion not waveform. No distortion at a given distance usually means a flat focus field, the quality which Carl Zeiss highlighted when naming the Planar lens.

Alternatives to the 24mm

The best way to get the 84° coverage with similar near-perfect rendering is to go for the mid-range of a high end zoom. As it happens, Sigma’s 8-16mm is better at 16mm than any of the above-mentioned APS-C options and you can also get a pretty good 16mm from their 10-20mm options and Tamron’s 10-24mm. Tokina’s 11-16mm f/2.8 is weakest at 16mm, best at 11mm. The older Sony 11-18mm is not wonderful at the longer end.

On full format, 24mm at the bottom end of the 24-70mm CZ is no match, it has more distortion and softer corners; 24mm in the middle of the 16-35mm CZ f/2.8’s range is better but with strong complex distortion, more even than the Konica Minolta 17-35mm f/2.8-4 D lens (which manages f/3.2 wide open at 24mm). You might think Sigma’s 12-24mm full frame zoom could be good at 24mm, and perhaps version II HSM when it finally become available for Alpha will prove to be. The original, which I still use mainly for its superb 12mm results, places its worst extreme of field flatness deviation at the image edge when set to 24mm.

I have used Canon’s 24mm f/1.4 USMII and this is faster, larger and more expensive than the Sony CZ lens in almost perfect proportion. Like the CZ f/2 it is a nearly perfect lens, with a hint more barrel distortion and slightly soft extreme corners on full frame wide open. The same goes for the Nikon 24mm f/1.4. I’ve also used Canon’s 24mm TSE tilt-shift and this lens betters the CZ for technical and architectural uses, as it should – so does their 17mm f/4 TSE, which has no match in any format. But such lenses can’t also be used for everyday autofocus image grabbing whether professional or family.

Last question, then. If such a perfect lens can be made at f/2, surely all the affordable 24mm f/2.8 designs could be just as good? We wish! Wouldn’t it be great if the classic Minolta 24mm f/2.8 AF which Sony never transferred to the new Alpha range proved to have the same optical excellence as the CZ? It does not. Nor do the Canon 24mm f/2.8, or the Nikon, or anything made by Pentax or Olympus, or even Leica.

The 24mm f/2 used at f/2.8 on the Alpha 55. Try this with a classic Minolta 24mm f/2.8 and even on APS-C you won’t get the same corner to corner even illumination. Here the focus is on the distance, not the tourists – they are also showing a surprising amount of movement at 1/40th. Click the image for a full size view.

This 24mm is the most recent AF 24mm prime lens to have been designed for full format. Zeiss have designed a slightly more complex manual focus 25mm f/2 Distagon for Cosina partnered manufacture, available for Canon and Nikon, since Sony showed the 24mm at photokina 2010. But Sony’s full-frame DSLR rivals, Canon and Nikon, have not gone for this sub-£1,000 RRP ‘moderately fast’ 24mm niche.

If there’s one competitor, it is Sigma’s excellent 24mm f/1.8 EX DG, which uses a larger 77mm front diameter glass unit to reduce vignetting to the absolute minimum. Distortion is higher, and the lens at present has no HSM version. This makes it less future-proof for Alpha system owners, and also less compatible with NEX and with video shooting in general.

Features of the 24mm

Because it’s a fixed focal length, the 24mm is a very plain lens – it has only two controls and one moving ring. There is an AF/MF switch, though unlike SAM lenses this lens can always be controlled from the body. With SAM type lenses (built in non-supersonic focus motor) it is essential to use only the lens switch, and never to use the body switch instead while leaving the lens set to AF. This is because any attempt to focus manually may damage the gears and motor unless the switch on the lens is specifically disengaged.

Manual focus or held focus can be set or toggled using the single on-lens button. New Alpha models like the 77 allow a wider range of functions to be assigned to the lens button, which is described in the menus as a Focus Hold button. Direct Manual Focus is also supported on bodies which offer DMF, meaning that once focus is confirmed and locked by your pressure on the shutter button, you can fine-tune focus by eye before firing.

The manual focus action is very smooth and well balanced, not too light and not too short in throw (which can be an issue with shorter focal lengths. The focus scale is minimal, behind a traditional Minolta-style clear window, with a depth of field indicator to the minimum f/22 aperture. Really, such markings mean little today as we expect so much from higher resolution sensors. It is time that Sony, and others, built parameter-governed DoF calculation into firmware.

Here, f/5.6 was judged to be fine for the degree of differential focus wanted – at ISO 400, by tungsten kitchen spotlights and window light mixed, on the Alpha 77 hand-held with SteadyShot and manual ‘peaking’ focus.

The CZ design is clearly corrected for medium distance work but retains its performance for close-ups. Unlike Sigma’s design which achieves 1:2.7 image scale, or the new manual Zeiss 25mm which focuses down to 18cm and 1:4, the Alpha lens focuses to 19cm (actually, I make it 18cm as the scale goes beyond the 19cm marking) and manages a 1:3.4 image. Don’t be fooled by distances! The front element of the CZ is already 12.2cm from the sensor plane, and the lens hood takes another 3cm or so. The actual clearance when shooting at close range is minimal. For comparison, the SEL 16mm f/2.8 for NEX will only focus down to 24cm, and the front of this lens is only 40mm from the sensor, leaving a clear 20cm between camera and subject. The Nikon and Canon f/1.4 designs are limited to 25cm and are, quite simply, nothing like as useful for close-ups as the CZ.

You might think that the 16-50mm f/2.8 or the 16-80mm CZ could match the combination of wide angle and close focus found on the 24mm – but not so. To get similar close-ups even at a 24mm setting is not possible – an extra 6 or 7cm in minimum focus distance, when you are talking an 83-84° angle of view, makes a big difference.

Moving in to minimum focus, the bottom wing of the lens hood was only 1cm away from the subject – under 19cm from bread roll to sensor, but only 6.8cm from bread roll to front element. At f/3.2, a hand-held 1/40th was needed (the closer you get, the less you can rely on SS to handle speeds like 1/15th). Focus peaking again enabled the manual focus point to be precisely judged. Great bokeh too.

With a non-rotating front thread, 72mm is one of the classic Minolta sizes. It is necessary to use slimline filters, as with the 20mm f/2.8. It’s interesting to compare the revived older lens with the newer one. The 20mm has only five mount contacts, being non-D specification where the 24mm has eight and reports much more accurate focus data. The 20mm has no lens button, uses screw drive focus, and has a close limit of 25cm at which it has a 1:7.7 image scale. There is also a considerable difference in the build and feel of the CZ; I have no doubt it contains some plastic, but it feels like a good solid piece of engineering and is stated by Sony to have a metal lens barrel. Not metal-skinned plastic, like NEX lenses.

As for coatings, Minolta’s legacy was a use of multiple layer (super achromatic) coatings to rebalance both the contrast and the colour transmission of the entire AF lens range (except designs made by third parties, like the 100-400mm APO). This advantage over other makes was never capitalised on, and made some Minolta designs seem lower in contrast than competitor’s equivalents. No-one ever complained about the colour though! Zeiss’s path from 1975 onwards was to use multicoatings a different way, maximising contrast and light transmission but permitting each lens design to have its own colour transmission quality and variation in contrast. Contax RTS lenses were always praised for their resistance to flare and their extreme macrocontrast.

Since the advent of digital, both overall contrast and colour transmission have become less critical – no need for packs of filters to balance lenses for repro purposes, no need to test Kodachrome with a clip-test to set this up. Just post process or shoot a WB card to taste. Also, Sony Alpha lenses are made in many places – the old Minolta unit, the new CZ-Sony collaboration, co-developed with Tamron and apparently also with Sigma, built by Shanghai Optical or some other owned and partnership facilities in China, made in Thailand but not apparently any more in Malaysia…

While distortion associated with viewpoint and perspective perception is always a companion to shorter focal lengths, over the field of the Alpha 77 (equal to a 35mm lens view or so, in full-frame terms) shapes and solids look natural. At f/4, and ISO 1250, I’ve chosen to downsize this 77 file to 3600 x 2400 pixels (click the image to open). This still allows you to see how clean the light sources in-shot are, with absence of colour fringes. Depending on conditions 1 pixel CA cancelling may be needed with the 24mm.

So, we have here a lens with a Zeiss design and a T* coating which is entirely unlike any Minolta legacy design and will surprise those used to the way ex-Minolta lenses perform. It is fairly immune to flare, not entirely so when confronted with bright sources just outside the image margin, but without the strings of coloured patches associated with 24mms and light sources in the shot. It focuses silently and at a speed which means you may not notice it.

The lens itself weighs 555g, and at 76mm length and 78mm diameter it’s smaller than the 16-50mm f/2.8 SSM which weighs 22g more. I’m not a big fan of lenses you can not clasp in one hand while also operating the lens release mount of a camera; optics this size and weight are about the safe limit. You can not compared the lens-juggling friendliness of the 28mm f/2, for example, with either the 24mm or 16-50mm and even the 16-80mm zoom is much easier to handle in the field. It’s best to remove or fit the hood before changing the lens, don’t leave it in storage position.

The hood reverses over the lens neatly. The whole item, when in this configuration, is a bit large to handle for safe and secure lens changing.

The finish is lustrous, with rubber rib grips that collect dust and dander readily. The supplied lens hood is surprisingly flexible plastic, with a slight spatter finish to the exterior and a kind of semi-flock paint on the inside. It is efficient, but a poor fit with a not very firm bayonet locking action. It’s easy to get the alignment wrong and it’s not as firm or solid as most other Sony hoods. The rear lens cap is still the frustrating one-orientation only design inherited from Minolta, which leaves even those with a quarter of a century of lenscap-fitting experience fumbling for the correct position.

There is of course a Zeiss front lens cap and you get a free blue badge on the lens itself!

Format, pixel count and cropping

For many years when using film I found wide-angle zooms were not essential, standard zooms were useful, and tele zooms were vital. Generally, with any wide-angle you can zoom with your feet or by doing little more than leaning forward or back a bit. Either that or you simply need the widest lens you can get. Whenever I fit my Sigma 8-16mm or 12-24mm on their respective formats it’s the 8mm or 12mm end which is needed. I only end up zooming in if for some reason I decide to leave the lens on, and move to a different situation without time to switch lenses.

With film, you could crop and enlarge. Small pixel count DSLRs made that difficult or impossible – when you are trying to make 6 megapixels do a full page magazine image, cropping is not an option. Zooming in to fill the frame every time became vital from 2000 to 2008 when the first full frame 24 megapixel models arrived.

I think that 24 megapixels has finally made cropping an alternative to zooming. You may need 9 or maybe 12 megapixels, or if you are shooting entirely for the web you may need no more than 2 megapixels. Fixed focal lengths of exceptional quality, sharp all over the frame in the plane of focus, start to be useful. It has never been a good option to crop wide-angle zoom shots asymmetrically, using just one corner. With a lens like the 24mm you can crop any composition out of the high resolution frame and it will not look so different from an on-axis shot with a narrow angle lens.

Lens resolution really does count, as I have found. For three years I used the Alpha 900 with a range of lenses, including the 24-85mm Minolta RS I keep for convenience. When working with medium format lenses on adaptors, I could see that zooms while ‘sharp enough’ usually came nowhere near realising the potential of the 900. Then, using the 24mm, I saw the same pixel-level sharpness pop out. After a month using the 24mm (kindly loaned by Paul Genge) my ordered Alpha 77 finally arrived. I had already seen how the 24mm got the maximum from 16 megapixel APS-C, and this was followed by discovering its power to do the same at 24 megapixel APS-C.

A standard Sony leather-look lens posing pouch is supplied.

How far can this go? If Sony’s 24 megapixel APS-C sensor formed the basis for a full-framer, it would be a 60 megapixel monster and match all but the most expensive medium format image sizes. I believe the 24mm CZ could go there if Sony chose to.

And that, in the end, is why I changed my mind about owning one. The hour or two of useful daylight and howling gales outside have not allowed me to make much use of it yet – but this is a lens for the long term. And for tomorrow’s Alphas as well as today’s.

– David Kilpatrick

Footnote: added February 2016 – I’m now selling this lens, as I don’t think Sony is likely to produce an A99 model II with functions that will restore what I want to have (notably, GPS – they are most likely to drop this). I’m looking at a move to native FE-mount lenses and probably the 25mm f/2 CZ Batis, even though it’s weaker for close-ups, vignetting and distortion.

Here is a recent example of a full aperture shot on the A7RII with LA-EA3 adaptor –

http://www.pbase.com/davidkilpatrick/image/162677066

Sony Alpha 77 review – tomorrow today

It must be two years ago, at least, that an Australian sports photographer confided he had seen a Sony prototype which would blow away everything – an Alpha which could shoot at incredible frame rates (he mentioned 15fps) and follow focus. It may have been something unlike the Alpha 77, which follows focus 12fps with locked preset exposure, or in any appropriate exposure mode at 8fps. Or it may have been an early experiment. Whatever it was, the 77 is close to this rumoured prototype .

The Alpha 77 is a successor to the Alpha 700. Here is beside my old and well-worn 700.

The viewfinder

The Alpha 77 is a camera that points the way for future development, whether of DSLT (Sony ‘Translucent’ mirror technology) or entirely mirrorless SLR-mount bodies. It’s the OLED viewfinder with 2.4 megapixels of self-illuminating RGB which changes the game. It makes the transition from optical to electronic viewfinders likely for everything except a limited choice of professional optical viewfinder DSLRs. EVFs will not be unique to Sony and it will continue to develop in resolution, colour fidelity and refresh rate.

But this type of viewfinder has a specific limitation. Unlike earlier EVFs, the Sony OLED has a threshold below which it simply turns the pixel illumination off entirely. To save battery power, this is set to a relatively high black level and clips the three-quarter tones straight to d-Max. All EVFs are slightly unsatisfactory to the human eye because there’s no real shadow detail to see if you switch your glance away from well-illuminated parts of the view. The new OLED has dead black shadows and it doesn’t matter how much your brighten it, the cutoff is based on exposure level in the image.

If you own an A55/33/35 then the new finder is so far removed it might as well be an entirely different era, not just a generation. The area surrounding the huge visual image is dead black, not milky and luminescent like the A55. The shooting information is set neatly outside the image, not overlaid at the edge overlapping picture detail. The colours are bright and the information text, though smaller to the eye, is crisper and far more legible.

One comment (added after this was first published) – the A55/33/35 may be considered better in very low light. In good light, the OLED/24 megapixel combination is excellent. In low light, it shows noise until focus and exposure are confirmed by shutter pressure, at which point the view clarifies and the noise reduces. In near darkness, its shows very strong noise, mainly red, which largely obscures any visible detail. In conditions where exposure was 15 seconds at f/2.8, ISO 100, using the A55 and A77 side by side the A55 was better. It looked grey and flat, but surprisingly detailed and bright into shadows which were too dark to penetrate by eye. The A77 gave a contrasty screen or finder image with little useful detail, nothing in the shadows, and very strong noise. Clearly the CMOS sensors are responsible for whatever level of detail is visible, and the A55 sensor seems to me have a couple of stops more lift to tones on the threshold of its sensitivity. The EVF types differ in the A55 showing more shadow detail with lower contrast, and lower colour saturation so the noise does not look bad. Bottom line, the A55 is half way to night vision; the A77 is like turning on an old UHF analogue colour TV, no signal, just noise.

There will be users who complain that having vital information just above and below the image area means they don’t see it because of their specs. But the A77 has the best eyepoint and visibility for this info of any model to date. All I can say is that if you ensure you are using the EVF correctly, you will always be in touch with what the camera is doing.

This shows a ‘busy’ finder display – in fact, everything overlaid on the photo here can be turned off leaving just the active focus point (a single one, if you use centre spot focus) and the neat information bars above and below the image area. The rest of the field is dead black too, not milky grey like the Alpha 55, and the contrast is high. This image is dropped in and has no connection to the information displayed!

The result is a very graphic view of your composition. Despite the impressive size of the apparent viewfinder image, it is not as large visually as the Alpha 900. The A700 for example is 95% field at 0.90X of a 1.5X sensor coverage, a viewfinder ‘size index’ of 0.57X (0.95X0.9/1.5). The A900 is 100% of full frame at 0.74X, index 0.74X. The A77 is 100% of 1.5X format at 1.09X, index 0.726X. It’s therefore closer to the A900 than the A700.

The A77 eyepiece glass is much closer to the eye than the A55 or previous SLR models, and the upper positioned eye-sensor turns the finder on and off with precision saving power but causing no delays.

But has Sony got the figures right? The A55 claims to be 1.1X and 100% view. Each camera has a different eyepoint – 27mm for the A77 compared to a mere 19mm for the A55 – but this should not be allowed to influence the stated apparent magnification. Placing one camera to each eye, the A77 has an almost 20% larger apparent viewfinder field (linear) than the A55 and about 30% larger than the A700. It is just a fraction smaller than the A900 as the calculations indicate.

It looks to me as if the A55/35 manual misrepresents the EVF size in that camera, it very clearly is not larger than the A77. Perhaps they include the dead space not used for the image but for data. In the A77, the data display is tight and efficient and it can show everything you ever want including the ISO in use when you select Auto ISO.

All the other figures agree. It also makes the A77 finder view an almost perfect match for Nikon’s full frame DSLRs, which have a slightly smaller apparent screen size than the A900.

The less-shadow-detailed aspect of EVF works for composition much the same way early Leica viewfinders did. The scene is simplified, and this tends to concentrate the eye on impact and simple compositions. Using the A900 alongside the A77, I was struck by the way the A900 puts you in touch with texture, colour, subtle light, and fine details. The A77 reduces the world to simpler tones and connects you to shapes, composition and impact.

As for flicker, shearing when panning, clarity of focused detail – well, these are all limitations, but much reduced in this new finder. What is not so limiting as the A55 or the earlier NEX models is the speed of startup from sleep. The A77 finder really does go to sleep (the A55 is very good at failing to switch off) and wakes up so rapidly, as your eye approaches the finder, you don’t miss the shot. Combined with the mere 1/20th second shutter lag, this SLT gets back to the responsiveness of classic non-AF SLRs.

You can cycle through these displays or choose to skip one or more when pressing the Display button (there’s a menu item to configure exactly what information each press shows you, with separate settings for the EVF and the rear screen). These diagrams from the manual do not represent the finder very well. Our colour version, using a finder overlay file supplied by Sony, gives an accurate view of what looking through an A77 finder is like.

Here I am, I’ve written stacks about the viewfinder and not even begun to describe it fully. Tell you what – go and find one, try it. I can’t photograph it adequately (I have tried) and it would be exhaustive to go through the deep menu settings of the A77 which let you decide for example how many different information-display setups you scroll through when you press the Display button. Don’t want EVER to see the horizon level guage? Then set the camera to skip it. Hate the graphic display of f-number and shutter speed scales against each other? Deselect that too.

 

From the Alpha 77 Karma Sutra – left, position for portrait photography; right, position for those who like to video themselves and still look as if they are in eye contact with the viewer.

And then there’s the rear screen. It has a double hinge and rotate action, of which more later. It is a top grade screen, 3 inches and nearly a megapixel. If you plug an HDMI monitor in to the camera, that will take over providing a better solution for studio or video previewing. Even a 20 inch or larger HDTV set looks sharp when fed from the Alpha 77.

The menus of the A77 require the attention to website presentation detail best reserved for the galley-slaves* of dPreview. Trust me, if there’s anything which can be set on any other Alpha, it’s probably settable on the 77 or not there at all. I’m sad to see that I can only control my auto ISO range minimum between 100 and 12800, and my maximum between… 100 and 12800! Of course this is great. I can have auto ISO over any possible sensible range but not ISO 50.

*Queried on dPreview forums – I’m an ex-newspaperman. Galleys are proofs of type (or the metal itself) and if you’ve ever worked on the TV listings or the Sports pages, you’ll know what it means to be a galley-slave in editorial terms – form before function, and function before fun! Well, I can have fun. I do not have to reproduce every single screen and menu because there’s no big boss saying that’s how it is done! It’s great work that dPreview undertake. But as someone else has already done it, I prefer to spend my energy doing the stuff they haven’t done. Then you can read both.

ISO 50? What use is that, with less dynamic range than 100?* It’s a great deal of use. In my studio with powerful flash – which this camera can cope with perfectly, having a setting to over-ride exposure simulation in the EVF/screen and do auto gain for modelling lights – it gives me an extra stop instead of being forced to work at a setting like f/13 or get overexposure. Outdoors in bright light it combines with the 1/8,000th top shutter speed to remove the need for a 4X ND filter to get superwide apertures, but due to reduced dynamic range, it’ll still clip whatever highlight would have been clipped with an overexposed ISO 100 shot. In the studio I can control my contrast to use it well.

*This is Sony’s own statement in the manual, page 139: “The recordable range of the brightness of a subject (dynamic range) is slightly narrower for areas where ISO is less than 100.”. DxO Labs tests actually say that colour depth, tone depth, dynamic range and signal to noise ratio are all at their best if you set ISO 50, but they also show that ISO 50 is really ISO 63 overexposed a bit and ISO 100 is really ISO 80 underexposed a bit. Where that leaves the intermediate 64 and 80 settings on the camera we can only guess.

As well as all the info in the finder and on the back LCD, you get this top plate LCD which means you can close the back one. Even when the camera is asleep (power save mode) the sensor must still be receiving and handling the image, as the exposure display will change when you move the camera around. I’d guess this is a low power mode which also enables the system to continue to monitor exposure between frames during sequence shooting.

At first I did not fall in love with the Alpha 77 – when my purchased firmware 1.02 version body locked up on me in front of one Canon and one Nikon user I was just a little angry with it. It could have done this somewhere quiet, on its own, without spectators. Even now with firmware 1.03 I am not sure it won’t repeat the cataleptic fit, but it shows no signs of doing so. See my section on the Movie mode later on, though…

The SLT mirror and ghosting

I’ve tested the Alpha 77 in the most demanding lighting conditions. Sony says the SLT mirror (a very thin film of plastic stretched on a frame) has new mirror and antireflection coatings. They have also paid extra attention to the design of the AF module and the interior of the darkchamber, to avoid reflections.

Though some colour fringes on the bright water definitely hit this 16-80mm CZ shot (along with a colour bokeh issue making those in the foreground magenta and those to the rear greenish) there was no hint of any ghosts or flare in dozens of shots taken in conditions like this.

This light is extreme, and the patches of sun and reflection are placed exactly where the Alpha 55 tended to produce flare. The Alpha 77 shows no sign of it, and has not in any of our photographs so far.

As far as loss of sharpness goes, I do not believe there is any more significant sharpness loss from the SLT pellicle than there is from, for example, the rear filter permanently fitted into a 300mm f/2.8 Apo G tele. Both are between the lens and the sensor and both are plane clear optical elements. If anything the glass thickness and distinct double air to glass surfaces of a rear mounted filter make it far more likely to degrade an image than the SLT. Almost any filter you fit in front of the lens is going to have a greater effect (unless you spend a stack of money, a really bad effect on 24 megapixels – we’ve replaced our older Minolta, pre-digital Hoya and other filters with the latest Sigma EX DG after testing them).

This is just a routine test I ran at all ISO settings to check colour and tonal response. Not noise. I already knew before doing this that the noise thing was a non-issue for the simple reason that this sensor beats anything else out there; I’ll start pixel-peeping for noise when another maker comes along and shows they can do this pixel density better. The colour is also very consistent indeed across the ISO range and the feathers in the mask retain the expected detail up to ISO 3200.

This picture was taken using a setting I quickly discovered is just perfect for news, PR, presentations and images needed quickly from events – the Small JPEG in camera, with DRO enabled, at ISO 3200. Sampling down to one quarter of the file size (still large enough for an A4 print) creates a dead sharp, low noise image. Photographers do some good, occasionally – this is a cheque for £3000 being presented to DJ Dave Lee Travis for the PACE Centre charity, by the Master Photographers Association. Their annual dinner happened just a week after I got my Alpha 77. I was confident enough to risk taking all my press and PR shots on the new camera.

And this is a 100% pixel level view of that shot without any post processing.

Input and feedback

Then again, having to set up the camera and realising the full extent of the customisation possible through the Menu and Fn buttons, I felt depressed. This was almost like handling a Canon 7D – one of those cameras where, if someone passes it to you, you can never be sure if it has been configured only for photographing flocks of ibis flying behind bare poplar trees. Would its 19 AF points and 11 cross type sensors do the 7D trick of locking on to a sweet wrapper someone dropped on the lawn instead of the wedding group a yard further away?

Well, yes. The A77 can do that sort of wrong stuff if left on wide area focus – but it doesn’t light up the wrong AF points in the finder to fool you, and it does not require programming of AF preferences to avoid proximity or response speed errors (both Canon and Nikon pro models can disappoint if used ‘out of the box’, and need their defaults changing depending on your typical photo situations). Instead, if provides very accurate feedback about which sensors are being used. And it has Face Detection which really works, because this is a live view camera 100%. I have never liked Face Detection much until the SLT EVF generation arrived. Even then, not much.

Face detection kept the focus on photographer Paul Cooper (right) accepting the president’s ribbon of the MPA from Henk van Kooten (left) despite Henk’s focus-target jacket moving into the foreground of the AF zones. Taken by stage lights at ISO 3200

I had to take a few shots where a person receiving a presentation was facing the camera, and the presenter often stepped into shot with back of head to the lens. With Face Detection on, the A77 never once switched focus to the nearer person, and always stayed locked on to the subject facing me. This is a situation where the above-mentioned makes, if allowed to use wide area or multi point AF, tend to shift focus to the foreground intruder because as conventional DSLRs they don’t have Face Detection in optical viewfinder mode.

The auto exposure of the A77 seems to be more closely linked to active AF points than any previous model. It may have 1,200 metering zones on the CMOS sensor but it will bias strongly towards correct exposure at the point or points of focus, especially if the central point coincides with a very bright are. I do not mean it is literally spot metering. I mean that, for example, in my office with medium lighting and a very bright computer screen if the camera is aimed at the screen the exposure in matrix mode, with centre spot focus, becomes correct for the screen and the rest dark. When the screen is moved away from the centre zone, exposure increases by two stops even though the overall image contains about the same brightness.

What I’m seeing may not be the same sort of meter-linking-to-AF that is found in the Canon EOS 400D, as an example. This will give you over or under exposure if the focus point hits a dark or light area. The A77 biases towards avoiding overexposure. A dark subject at the central focus point does not seem to brighten the image the same way a very light subject, like a screen, darkens it.

This is not like separate metering cell TTL, the classic Minolta honeycomb. It isn’t even like a camera with centre weighted or spot optically fed meter cells. Every point on the sensor is a spot meter even though you can only ‘spot meter’ from the centre. Every point is equally sensitive down to EV–2 (ISO 100 with f/1.4 lens) and up to EV17. It is four times more sensitive as a matrix/centre-weighted meter than the Alpha 900 and a staggering 16 times more sensitive than A900 spot metering mode. It also has +5 to -5 EV exposure compensation compared to the A700’s+/-3EV (A900 – 3EV, expanded to 5EV by later firmware, but the 700 was never improved – see comments, originally I referred to A900 as 3EV either way, as that’s in the manual). And whatever things the SLT mirror does, it seems to feed the new AF module plenty of light – it’s able to focus in conditions half as bright as the A900. Added comment: the A77 metering is four times as sensitive as the new Canon D1 X, so although that camera has amazing sensitivity up to ISO 204,800 the A77 will actually meter exposure in lower light.

So, after a couple of weeks, I began to realise that the A77 was giving an even lower failure-rate than the A55. I had learned which settings to prefer – three zone focus for example is far better than old-style wide area and almost makes single centre spot focus redundant. I was finding that exposure is generous but never highlight-clipped, because it’s read from the actual imaging sensor; you can trust the simulation given by the EVF, too, and adust the +/- over-ride with confidence.

The camera stopped being complex and started to suit my declining mental powers. Life is a curve. You start just learning to set shutter, aperture and focus. In your prime, you want to set twenty different things for every shot and switch from P to A to S to M with C or S or A and -2 sharpness and ten stop HDR then portrait look for the next one. Ultimately as the brain cells sneak off for a nap you find good old shutter speed, aperture and focus do you just fine.

If you need reminding in big print, let the rear LCD see the light of day, and you get this big clear information pane on demand.

Now some cameras have fooled me, there are no dials and they just hid this stuff from me so I’d end up with bad things like the optically soft set of landscape pix I shot at 1/2000th and f/5.6 (wide open) on the NEX-5 last month. But the Alpha 77 with its top plate LCD info display, its ‘come to life’ burst of finder shooting information when you take first shutter pressure and confirm focus – well, it is constantly reminding me what I am doing. I know other cameras and other Alphas have finder displays, even the NEX was probably telling my longsighted eyes what it was up to, but the Alpha 77 presents working information better than any camera I’ve used. It is simply a very clear and well designed display both in-camera and on the rear screen.

If you enable image review, the SLT cameras slow down. I fold the rear screen to face the camera back. I have turned off image review. I shoot with confidence just as I would once have done on film and sometimes I do not check a single image until I’ve copied the card contents to my computer.

Button pushing

The Alpha 77 has loads of buttons despite Sony’s one-time insistence that they planned to have fewer mechanical components in future. There are nine push buttons, one rocker button and one control wheel on the back of the camera alone; five push buttons, one collar switch, one shutter and control wheel on the RH top. Then there’s the stray stop-down button, the lens change release and the AF-mode switch living round the mount.

Rear screen folded away and protected – that’s how I use the camera all the time. Plenty of buttons to push – and you can have fun swapping their functions round to confuse your friends!

Several of these buttons can have their functions modified so they no longer do what it says on the silkscreened white or blue print (white for shooting mode, blue for playback). If you are particularly odd you can even swap round functions and confuse people who borrow your camera (shades of Canon!). If you are relatively normal you can leave this well alone. You may customise the stop-down preview button to show the final picture effect instead (stop-down plus picture style and shutter speed result) and through the menus you can change the behaviour of lens-resident Focus Hold. The instruction manual omits to mention these are on the lens, and not on all lenses – some owners have spent ages looking for the Focus Hold button which does not exist on the camera.

What’s most odd about the A77 is that three of the main dedicated-function buttons are completely interchangeable. ISO (next to the shutter) AEL and AF/MF (under your thumb) can all be changed to do anything from the following long list of functions:

AEL Hold*
AEL Toggle*
Spot Meter with AEL Hold*
Spot Meter with AEL Toggle*
AF/MF Control Hold*
AF/MF Control Toggle*
Object Tracking
AF Lock*
Aperture Preview (stop down)*
Shot Result Preview (final picture simulation)*
Smart Teleconverter*
Focus Magnifier*
Memory
Exposure Compensation*
Drive Mode*
Flash Mode
AF Area
Face Detection
Smile Shutter
ISO*
Metering Mode
Flash Compensation
White Balance*
DRO/Auto HDR
Creative Style
Picture Effect
Image Size
Quality

*The entries I’ve marked with an asterisk already have their own dedicated buttons for which these are normal function choices (AEL button, for example, covers all the first four but can only do one function, preset in menus).

There is one button you may want to modify if you own lenses with a Focus Hold button. The AF/MF button, by default, performs this function with most lenses (it switches to MF when pressed, the same effect as holding focus). So it’s almost a spare button, given that there’s also an AF/MF switch on SSM/SAM lenses and a body AF/MF/S/A/C switch too. Since it sits right next to the AEL button and closest to the rear control wheel, it a natural choice for any function you might want to use in a hurry.

You can not change the function of the Finder/LCD manual switch button, the Drive Mode, the White Balance or the Exposure Override. You can switch the Preview and Smart Teleconverter buttons between two functions each only. The Fn button accesses all the parameters you can’t reach directly through any custom button (like setting the Auto ISO range) and most that you can (like Face Detection). Its full function list is:

Memory Recall (only present when mode dial set to MR)
Scene Selection (only present when mode dial set to SCN)
Movie (only present when mode dial set to Movie)
Drive Mode
Flash Mode
AF Area
Object Tracking
Face Detection
Smile Shutter
ISO and ISO Auto setup
Metering Mode
Flash Compensation
White Balance
DRO/Auto HDR
Creative Style
Picture Effect (only active for JPEG-only shooting)

The Display button can not be customised and only serves to cycle through Display setups – but you can customise those, and thus what the button does for you (above, Menu to set which finder display states you wish to cycle through, ticked). The Help (?) button can also not be customised, which if you don’t want potted hints and tips makes it redundant in shooting mode, though it serves as the Trash button when reviewing images. The Playback also can’t be customised, nor can the Menu button (which can return to Last Used or Top by setting a preference), nor the top LCD illuminator button. This one is interesting because it toggles – the panel light remains on until the camera goes to sleep, or it’s pressed again to turn off.

In use, I found there was one button missing which would make a huge difference to this camera. The 12fps ultra high speed shooting mode is only accessible through the mode dial. Because of the way the camera handles bursts of frames and buffering, it would be useful to be able to shoot normally in any mode (single frame, or other continuous speed) and switch to 12fps by holding down or toggling a button (preferably holding down, say, the AF/MF lock reassigned for this purpose).

Here’s a neat touch – as long as you have a lens with no MF/AF switch on it, you can set M focus on the body selector, and pressing the AF/MF button will do autofocus for you, letting it go will lock the focus back to manual. That’s another reason to like my 16-80mm CZ on the A77 – ideal for studio products or architecture, or indeed for landscape. It does not work with the 18-55mm SAM. There is in fact a bit of an overall mess with SAM, SSM, and standard lens focus types including the assignable DMF (direct manual focus) to the AF-A mode. There are some lenses where you are warned never to use body MF setting always only to use the lens switch. What you will find is that some menu items are greyed out, and some buttons don’t work, if a mismatched combination is set.

Lens compatibility

The new 16-50mm f/2.8 is enabled for in-camera lens corrections

This leads to the general question of lenses and the A77 generation. It seems there’s some additional information chipped into some but not all lenses which enables the Lens Correction function (Vignetting, Chromatic Aberration and Distortion) for in-camera JPEGs. Raw files are unaffected, and I don’t know if this information is used to enable better panoramas but that would be a practical fringe benefit. But since the 18-55mm SAM, 55-200mm mk2 SAM, and 18-250mm (an old design relatively) are in the release firmware along with the 16-50mm SSM maybe there’s no info in the lenses themselves, and future firmware will add more.

The oddest incompatibility is the manual’s statement that Front Curtain Shutter should not be set on ON for ‘Konica Minolta’ lenses (added note – see Comments at the end of this article, some discussion of this). First of all, the description of Front Curtain Shutter is misleading. When this is set to ON, it means NO front curtain shutter – electronic gating instead. When it is off, you are using the physical Front Curtain, the blades uncover the sensor to start the exposure. The manual does make it clear that by Front Curtain Shutter Sony means No Front Curtain Shutter.

But what is a Konica Minolta lens? There are very few, nearly all were made by Tamron. Konica Minolta never even got round to rebranding the Apo G lenses, they just changed the box and the lens cap and left Minolta as the name on the lens. I have a 28-75mm Konica Minolta, a 17-35mm Konica Minolta and at one point I had an 18-200mm, and of course, the kit 18-70mm and various horrible full frame plastic lenses like the 28-100mm. I think there are 75-300mms in KM guise.

Everything else prior to Sony was Minolta because KM simply never made any, or if they did, it amounted to no more than a box label change. To confuse things, some of these Konica Minolta like the 18-70mm, 18-200mm and 75-300mm became Sony lenses without a single substantial change. And many Minolta lenses became Sony lenses while retaining a heritage right back to pre-D days or the origins of the AF system itself. The 28mm f/2.8 is the most obvious example, the 50mm f/1.4 another.

Why would an electronic front curtain produce overexposure or inconsistent exposure only with Konica Minolta lenses? Given the very fast response time (1/20th of a second) and high speed of the system (1/250th flash sync, 1/8,000th shutter) the only thing I can think of would be the speed of aperture closing action. It is also something which would be invisible in revised lenses; maybe the Sony 18-70mm kit lens actually has aperture blades which close 50 milliseconds sooner than the KM equivalent.

This would also mean earlier Minolta lenses, not just KM, might produce overexposure (aperture still not fully closed when exposure commences) or uneven exposure (aperture continues to close down during part of the electronic progressive gate-opening). The same would apply to many third party lenses.

I’m pretty sure this is why the warning is made, and that singling out Konica Minolta lenses is an error. Any one individual lens may have sluggish diaphragm, indeed a common cause of overexposure in all A-mount lenses is incomplete stop-down. So the advice should be don’t use ‘Front Curtain Shutter’ set to ON with anything except Sony A-mount lenses – or test your independent lens before use.

A warning about not setting Micro AF adjustment with third party lenses is given, as usual. This is because the makers borrow lens identity codes. The Sigma 12-24mm f/4.5-5.6 Mk1 has the same code as the Minolta/KM 28-80mm kit lens. This issue will also affect the behaviour of the Auto Lens Correction register, which in our body does not have any effect on the CZ 16-80mm for example but does correct the new 16-50mm. I would guess ‘correctable’ lenses have extra information, older and third party lens won’t. So don’t bank on this function fixing JPEGs from your ‘heritage’ of early Sony glass!

Sigma has issued a list of lenses which are known to have AF problems with the Alpha 77/65, and will upgrade them free of charge. You can read the list here: http://www.sigma-photo.co.jp/english/news/info_111014.htm. It includes the 18-250mm HSM OS, which we have. Ours does not seem to have any issues at all on our A77 with firmware 1.03. I’ve also tested the 8-16mm and 100-300mm OS, 70mm macro and 70-200mm f/2.8 HSM Macro MkII. These are not in the warning list and all seem to work well, even though they do not work reliably with the Alpha 55.

The A77 has Fast/Slow AF options and I’ve used Fast. The accuracy of the AF is much better than any previous Alpha model.

Autofocus and exposure

The 19-sensor, 11-cross AF module is not most densely populated – the A900 has 10 extra hidden ‘tracking assist’ line sensors bringing it up the same total (they are there, they just don’t have screen markings) and its central double cross sensor is technically the best type around. But having eleven cross sensors does more good in practice.

AF has a new mode, Zone. This creates three groups of sensors left centre and right which act like mini wide zones. Wide Area focus can, of course, locate widely spaced details which are concurrently in focus. Zone identifies the zone with the most focused points, then works within this area. It can use information about the change in confirmed focus within one zone to help track the subject into the next zone. It also gets the exposure right more of the time.

Because the sensor is feeding image data to an analysing computer, Face Recognition and Object Tracking can be linked to the AF. There must be some theoretical speed penalty – something must be slowed down by microseconds if you enable these functions. I can’t detect it. The only slowdown is the time you take to press the central controller button to register an subject for tracking. Smile Shutter is also possible. My subjects normally scowl so I don’t use this.

The focus point – here, centre focus spot aimed first at the family and then held using the shutter release to recompose the scene – helps determine exposure. The 1200-zone metering has correctly placed the baby’s white clothes in the value range 250 to 254 RGB.

The most reliable and accurate focusing method remains central single spot focus, or local selectable single spot. Now that all of these are cross-type, there is no compulsion to stick with the centre and recompose, but it’s a habit hard to lose. I have already observed that the metering in spot mode is 16 times more sensitive than spot metering in the 900, and I would guess that when the system biases matrix metering values to the centre focus point, there’s a related gain if not that much. There is a proper near-IR AF illuminator in the camera body – Minolta tradition lives on! Without flash, it really is possble to focus in the dark and the EVF does a very grainy but usable job as a night vision viewer too. The illuminator also enables focusing on plain surfaces as it projects a pattern.

The SLT mirror of the 77 diverts 30% of light to the AF module, but this is actually more than the old semisilvered patch and double mirror system used to let through in SLRs. The AF sensor itself may not be any more sensitive, it’s simply getting a much better image feed. This 30%, by the way, means the light reaching the sensor is reduced not by the 1/3rd to 1/2 a stop sometimes mentioned, but by .6 of a stop or nearly 2/3rds of a stop. 50% would be one stop. (See comments at the end of the article for some more precise figures on the mirror split provided by Dr Daniel Oi).

My experience so far with the camera indicates that exposure is very reliable over the entire EV range. I simply leave it on the matrix multi-zone setting. The EVF warns me if it’s going to bias too much to the focus point.

High speed shooting

This brings me to the aspect of high speed sequences. No cameras in this class has ever achieved 12fps, let alone at 24 megapixels. In theory you get 13 raw or 11 RAW+JPEG frames before the camera slows down, and it looks as if the buffer must hold about 320MB. The camera does not have a dual processor like the Alpha 900, and it does not benefit from the robust performance of fast CF cards.

Autofocus is provided in Hi drive mode, along with AE (8fps, accessed via the Drive function button, in any shooting mode). Using this shooting speed you have full control.

In Speed Priority AE mode (the 12fps setting on the mode dial) the focus is locked before frame 1 if you have the camera set to Single (S) AF, but in exchange for this, you can set both the ISO and the aperture. You can also set these if you use Manual focus.

If you set the focus mode to C (Continuous) then both AE and AF continue during shooting. You can set the ISO, but not the aperture, so the ISO is your only way control the shutter speed. Added note: the Canon 1D X has now bettered this record high speed shooting by providing 14fps. This mode in the Canon locks both AE and Focus with the first frame, locks the mirror up, and you must use Live View on the rear screen to compose the shot. For focus tracking with viewfinder, the 1D X is limited to 12fps.

12fps is very impressive. It makes a huge difference in action work. I often test sequence shooting on the local races, and I quickly found that even tracking a horse (necessary to keep it in the frame at all for more than one shot at 3fps) certain frame rates just produced two stages in its stride, repeated. The horse was galloping at 2.5 clops per second and I was shooting at 5fps. With 7fps it gets better, 8fps or 10fps still better and with 12 fps you reach the point where four different positions of the legs are recorded.

Also, it becomes possible to aim the camera at a fixed spot like a hurdle, and fire, capturing several positions of the horse before it leaves the field of view. It is not as necessary to pan with the subject every time to get more than one shot.

Animation of three hand-held frames, cropped from a Sigma 70-200mm shot taken at 70mm, showing how 12fps captures very fast action in relatively small steps. At 5fps, the second frame would have the horse leaving the right-hand edge.

In practice, you certainly get your 13 raw or 11 R+J shots at 12fps or the slower AF-capable Hi 8fps setting – or indeed at the slower 3fps rate. But you don’t get anything like the same continuous shooting capability as past models even if you knock the JPEG size right down. You’ll get around 18 Normal Small JPEGs (6 megapixels, lowest quality) at 10 to 12fps before the rate slows down to an erratic 3fps with occasional half to one second pauses. For raw files, after your 13-ish burst is up, you may get between 0.5 and 1 frame per second with occasional one to two second pauses. With an average SD card (20MB/s write) you will wait 15-20 seconds after the last shot before being able to shoot fast bursts again.

Here’s another sequence, this time as stills without the annoying animation you can’t turn off 🙂

And here, below, is a 100% crop from the original ISO 800 raw file processed using Adobe Camera Raw 6.5 (Sharpness 50, Radius 0.5, Detail 0, Masking 0; Luminance NR 25, Luminance Detail 50, same from Chroma NR)

Sharpness? The 12fps C-AF setting forced the Sigma 70-200mm to be at f/3.5, two thirds of a stop down from full aperture, but also gave a shutter speed of 1/6400th. I could have perhaps picked another detail with slightly more punch, and looking at all the shots, my prefocused point was actually about 1 metre behind the horse (if the AF refocused during this sequence, I can’t see any evidence in the images). The 8fps or Single-Shot AF 12fps settings allow control of aperture, and I know that f/5.6 would have cleaned up. Just remember you are looking at a section of an image something between 6ft and 8ft wide, it’s very easy to view a tiny clip like this as if it was just another digital image.

I tried one technique, shoot 2, 3, 4, 6 frames with brief pauses – as if catching different moments of an event, in bursts. Even though I spread the 10fps bursts over a ten second interval, by the time I had totalled 20 raw frames I was down to the single shot per second or worse situation.

To follow up, I shot a burst then allowed the buffer to write for about 8 seconds before firing again. I got seven frames at 12fps, which fits in with the card in use taking about 15 seconds to finish writing from a 13-frame burst.

For one of the horse racing tests, I shot one burst of frames and as the camera slowed down, two horses fell and two jockeys were injured, one requiring a stretcher. I was unable to get ANY pictures of the incident as it happened, and by the time the Alpha 77 was able to shoot again, the ambulance crew was on the track. Each race gave me just two chances to shoot a burst so I’m afraid that testing every single setting combination on the camera was not possible.

Panorama speed mystery

There’s something I don’t understand about the raw, file and buffer handling of the Alpha 77. Shooting panoramas – which have to start with exactly the same frame by frame 24 megapixel data readout – I counted 42 frames apparently firing at something close to the 12fps maximum, then creating a panoramic JPEG, and the finished 6.7MB JPEG file was written to card and the buffer cleared before I had time to see if the light was still on.

What exactly is happening here? How could the processor and the buffer somehow handle the throughput of the wide panorama with at least double the number of continuous burst frames I could get with even the smallest JPEG – and then do all the computing to assemble the panorama and write it to card, leaving me ready to shoot immediately?

I ask this because when shooting panoramas with the Alpha 55, my 15MB/s SanDisk Ultra II SD card failed – it was not fast enough, could not handle the data and became corrupted. Clearly panorama shooting is data intensive one way or another. But in the Alpha 77 it appears to be allocated buffer and processing power which is denied to more useful motordrive sequence shooting.

Movie shooting does not enjoy the same fast buffer clearing. Shoot any higher quality movie beyond a mere blip on the button, and you can’t fire a still frame for some seconds. With some HD-movie systems, you actually shot a still frame during the movie and lose nothing except a couple of movie frames; with others, you can end the movie by pressing the shutter and capturing a still. In yet other makes, you can shoot a still but lose two seconds during the movie. All these solutions are valuable when still shots could be important. The A77 movie function does not permit any such choice and may block all shooting by occupying the buffer to card writing process for many seconds.

And, in reverse, you can not initiate a movie while the card write light is on. I tried this with one of my horse race test subjects. I decided I would shoot the front runners going over a hurdle, get my 12fps burst, then do a few seconds of movie of the stragglers who reach the spot a few seconds later. Although I could have shot further (faltering) still frames, movie shooting was blocked out with a warning message telling me ‘Writing to Memory Card – Unable to Operate’. When raw shooting was set, this lasted many seconds, but interestingly with the small JPEG option only two or three seconds were blocked out.

After my tests of the high speed shooting functions, I conclude that to cover some sports events well you would need a pair of Alpha 77s, or the 77 and some other camera – and you would need to keep a close eye on the card writing light. As a result of the performance with my SD cards giving write speeds around 20-30MB/s I ordered a SanDisk 45MB/s Extreme Pro, and plan to get a 95MB/s card when they are available.

Added after receiving the SanDisk Extreme Pro 16GB 45MB/s card: burst shooting is not extended, using raw it varies from capturing 10 to 12 raw frames at maximum rate, sometimes with a single frame jumped (two groups of 5-6 frames) which never happens with my ordinary Transcend 20MB/s card. Buffer to card writing is reduced to around 10 seconds from around 20, but at least with this extra card speed, there is no way to extend the approximate 1 second unbroken raw shooting burst.

The Alpha 65 and 77 are the only DSLR/T cameras so far made which use the USH-1 SDXC specifiction to allow writing data at this kind of rate. They are ahead of the card game. But they need to have this capability. Anyone expecting to make full use of the high speed drive functions and best video quality of the 77 with cards like the faithful wallet full of Transcend 16GB Class 10s we have been using will be disappointed.

The dedicated Movie mode

On the mode dial of the A77 there is a movie position. This does not mean it has changed, like some Canon models, to be incapable of shooting unplanned movie clips – you can do this at the press of a button, like other Sony models. What the Movie icon means is that you gain access to manual control of ISO, shutter and aperture. As a penalty, you lose AF.

Why? That is easy to answer. The AF sensors in the 77 are rated for f/5.6 aperture use. Default movie apertures range between f/3.5 (typically set on fast lenses) and f/6.3 (well, with an f/6.3 zoom lens there is little choice). AF works best in this range. If you really want to shoot AF movies at f/2.8 on a 200mm lens, try by all means. I have tried at f/3.5 and for every clip which has a smooth focus transition, there will be another where the SSM, SAM, HSM or plain old screw drive makes a sudden shift.

So if you want to work at f/1.4, leaving focus to AF would be a disaster. Apart from making constant shifts, there’s a big chance of hunting. I worked with the 24mm f/2 SSM Carl Zeiss for a while, and this lens does not find focus easily in low light with any camera. On the A77 for video it was auto-set to between f/2.8 and f/4 in low light. Video AF happens at the actual working aperture, not wide open like still AF. Being stopped down a little improved the 24mm’s accuracy.

And if you want to work at a smaller aperture than f/6.3 – say f/16 for a deep focus effect with a superwide lens – then AF simply would not work at all. The Manual Focus restriction placed by using the Manual Movie mode is necessary despite the howls of protest it’s produced from those who don’t understand the technology involved. A side benefit of setting Movie mode on the dial is that your view through the finder is cropped correctly to the HD area before you start filming, which makes composition easier – see below.

In the Movie position on the Mode dial you might believe you can use the self-timer. The manual ticks that box. We had to check it, but although you can set the Drive state, including self-timer, doing so has no effect on Movie shooting. Nor can you shoot stills with the Mode dial in this position. Various other manual details, such as indicating flash can be usedin this mode, are also incorrect or there’s a small firmware glitch with the camera. I would expect the shutter release to be operational with the mode dial set to Movie, so that stills could be captured. It is disabled and you can’t take still shots at all if the dial is in this position. Be warned!

Not only that, but after I had pressed the Self Timer 10 second setting when in Movie mode, the LCD top display showed a single frame symbol plus the 10 from the self-timer mode, and the shutter release was disabled even after returning the mode dial to Program or other settings. The Drive mode had to be reset to get it out of this tangle.

As for the instant Movie button, it’s not in the best place – a long thumb reach for on and off actions to start and end clips and the placing tends to make me tilt or move the camera needlessly. When adjusting the viewfinder dioptre to switch from working with spectacles to working without, it’s so close to the dioptre control I push it occasionally by mistake. I would like the Movie mode to switch operation to the main shutter release OR the movie button.

It’s worth noting that picture effects (see later pages) can be applied to movies, as can all other image adjustments, and will be seen in the finder as you shoot.

But what you won’t see until the moment you press the movie button is the working HD movie area. It is a surprisingly fierce crop from the full sensor, not just a top and bottom slice to HD 16:9 format. This is required for the Steady Shot digital, pixel-shift based movie stabilization which does not move the sensor like regular SS. It reduces the 1.5X area to something like a 1.8X area, not as much ‘zoom in’ as using the 1.4X smart converter but enough to cut heads and feet off subjects you have pre-composed using the full finder. There are indicator marks on the display, that’s true, but you will find them hard to see in many conditions even if you remember to use them.

Shot with the 24mm f/2 lens – no way to move back or zoom out for the movie, but plenty of space you would think for the 16:9 HD crop.

This is what the HD movie viewfinder field switches to when the Movie button is pressed (slightly re-composed horizontally but not cropped at all). The movie stabilization need the surrounding pixels. It highly effective, both through the live viewfinder and when viewing the results, and totally silent unlike sensor-shift SS. It also does not warm the sensor assembly up as much.

A caveat to movie shooters. Select the highest quality AVCHD 2.0 formats (the camera will warn you) and you may not be able to play them, burn them to disc other than Blu-Ray, or import them into HD movie editing with programs like Apple iMovie. No doubt this will change with updates, but right now apart from Sony’s PC-only Picture Motion Browser (they have now had half a decade to port it to Mac) there are few programs which can recognise the 1080/50 or 60p 28Mbps format and even fewer which edit it. You will need to buy software to do so. On my system, Toast Titanium 11 includes Roxio HD viewer and because it is a Blu-Ray compatible disc authoring package, this was able to handle the .MTS files in all formats, and convert them to formats editable using iMovie. Roxio offers similar PC utilities.

Sony PMB is also very useful for GPS data handling, map viewing and correcting GPS data. While Adobe Bridge with the GPS Panel (download from Adobe) installed allows viewing and editing of co-ordinates, it still has no link to Google Maps, Microsoft Virtual Earth, or any other useful location display.

Sound

There is no provision for audio notes or audio only recording, which is a bit of a waste of built-in functions as this would be possible and can be useful. Audio notations attached to images are popular with travellers and journalists.

The stereo sound is not much different to the NEX or Alpha 55 despite being capable of 48kHz (better than CD) sampling. The microphone under its unusual top grille seems less prone to wind noise than most DSLRs; the wind noise reduction feature, a bass cut filter, is additionally effective. Body handling noise is present, so is lens focus noise.

The external mic socket provides 5v phantom power for popular condensor mics, and is stereo too. No provision for fixed gain is made – auto level or gain is always on. The camera needs an option to disable auto gain so that a preamp or mic with dB cut choices can be used to control a fixed sound level; better would be three levels, like Nikon; even better still a proper sound level monitor display and full control in fine steps like Canon. Without at least one of these options the Alpha 77 can not considered for semi-pro or professional live sound video work.

GPS Data

While I think that the GPS on the A77 has so far proved faster in locking and more accurate in positioning than the A55, it’s hard to quantify as I have not used both together for long enough in difficult locations. To improve your GPS, download this file:

http://control.d-imaging.sony.co.jp/GPS/assistme.dat

Create a folder on your SD card inside the PRIVATE/SONY directory and call it GPS. Copy this file into it, put the card in your camera, switch on. Go to GPS in the main menus and make sure it’s turned on, then look at the GPS ASSIST entry and you will find the assist data starts on the day you download and lasts a month. Visit the assist.dat download once a month or more often to keep your GPS working with the fastest and most accurate lockon and co-ordinates. Do not worry if you format or change cards, once in the camera the assist.dat file is copied to internal GPS memory. Your original card does not have to be present.

Sony state 15 seconds or more to acquire or change position, and variable accuracy due to GPS being a US military provision which can be subject to deliberate degrading. In this model, when no GPS signal can be detected on power up, the camera simply turns off GPS embedding (on the A55, it uses the last co-ordinate). But if you are out and about, the last position may be shown on some pictures. I don’t think I move that far in 15 seconds

.

An example of GPS map location from Media Pro and Google Maps – click on the image for a full size screen shot.

Adobe gripe – it’s long overdue for Bridge to have a GPS map function when Lightroom does. As it happens I use Media Pro for all my digital asset management. When this was Microsoft Expression Media 2 it has its own Virtual Earth window, but now it’s been taken over by Phase One, that has been replaced by auto-opening a web browser Google Earth window. I don’t really need to see maps at raw file stage, but it could help with filenames. I like my filenames to be a ‘catchline’ format – an alphanumeric string which contains a key word about the subject. That could be simple like venice2011-15.jpg or a bit more precise like guideccasangiorgiovenice2011-15.jpg.

Mouthful? Not ISO compliant? Not ancient PC friendly? Sure. But very useful indeed many years later when searching for stuff. And access to GPS map location helps me decide filenames, then later on input metadata for caption, keywords, description, and much more. With 15,000 finished images stored on my system everything which helps me identify them is valuable.

Image formats and styling

The Alpha 77 has a stack of great functions and features I will never use. That’s because they are not available if you shoot either RAW or RAW+JPEG. They include multi-shot modes (combining tonal range for HDR, or reducing noise for low light and high ISO) and in-camera post processing effects.

There are some of these JPEG-only modes I feel comfortable with. Panoramas, as an example, don’t provide a raw file and you can’t bracket exposures. You have to trust the camera despite the huge range of tones and light a wide panorama can cover. If you choose your start position well (including the brightest highlight area of importance) exposure is very reliable, and at low ISO with Fine quality, the JPEG is of a professional standard.

Standard JPEG (click images for 1000 pixel wide version)

Three-shot HDR using 3EV spread

Three-shot HDR also works well, especially at low ISO settings of 50 or 100 and in Extra Fine JPEG. The 24 megapixel file gives plenty of scope for reducing to a smaller final result. There is also a special HDR Painting mode, which processes the file with a masking effect to create what is currently a popular ‘look’. Unlike the standard range of HDR settings, this is far from being a straight image and the lack of a raw file or normal JPEG to back it up means it’s only for fun.

Over the top with HDR Painting style, High strength – it actually works best on dull, wet days with grungy subjects!

More ‘only for fun’ stuff includes soft focus, selective colour against mono (called ‘Partial Color’), toy camera, miniature effect, two monochrome looks including one which uses three exposures, ‘pop color’, posterization, retro photo, soft high key. All of these are irreversible real time post processing. You have no normal backup when shooting.

The post-processing method offered by Nikon and others, where you can apply similar effects to raw or JPEG files already stored on your memory card and create a new version, is preferable. For standard HDR shots on Sony’s current models, a normal JPEG is saved along with the three-shot HDR and that’s good. For any of the Picture Effect post-processes, even multishot, no standard result is saved – all you get is the processed file, after a wait of 10 seconds or considerably less.

Selective yellow on monochrome – but that’s the only shot I have. No raw, no standard JPEG…

You do get a pretty accurate preview of the result in the EVF. If the stop-down preview button is set to ‘Shot Preview’ mode instead of ‘Aperture Preview’, you also get a simulation of the effect of your shutter speed – so flowing water brief time exposures (up to 30 seconds) can be previewed to see exactly which shutter speed suits the water movement best. Along with exposure simulation, there should be no reason why your shot ever goes wrong.

The Auto ISO Multi-Shot mode, Multi-Frame Noise Reduction, captures six frames and creates one JPEG. The pixel alignment seems very accurate and shots at settings like ISO 3200 show an improvement in detail which would be hard to obtain even by good raw processing. It’s not so much the noise that is reduced, it’s the overall quality of the image which improves. Using the high 25,600 ISO setting which can only be accessed in this mode shows that it’s slightly inferior to a straight 16,000 ISO shot despite the six-frame synthesis.

For all these multi-shot modes, the 12fps function of the Alpha 77, SSS, and the quiet, mirrorless shutter action combine well. They are all usable without much effort or worry, hand-held. The one ‘tonal range’ adjustment which does operate in RAW+JPEG mode, though only the JPEG is changed, is the DRO or DRO+ setting which uses a single shot.

High speed shooting also benefits exposure, DRO and white balance bracketing. Early information and the use manual state that you can define the number of exposures for bracketing, and the range covered, with the Alpha 65. In fact it is limited to three shots. The Alpha 77 gives you a choice of 3 shots at +/-3EV, the same at 2EV, then 3 or 5 shots at 0.7, 0.5 or 0.3 EV intervals. It is missing the obvious 1 EV step choices and that will baffle many, especially HDR raw users who would like 5 shots at 1 EV intervals.

Flash

The Alpha 77 has a proper, threaded, high grade studio flash sync terminal as well as the usual Minolta i-type hot shoe. Like the Alpha 700 and 900 (and unlike the consumer level cameras, including the Alpha 580) it can have the HVL-F58AM or 43AM wireless control capable flash mounted on the camera to control group/channel wireless strobes with power ratio. It can also use HSS (burst flash with shutter speeds up to 1/8,000th and corresponding power attenuation). It can not officially use the HVL-F20AM as a wireless controller, but owners have found it works – with a slightly longer than normal delay in flash firing, according to Gary Friedman, who has compared it with the pop-up flash wireless control.

The flash sync Prontor-Compur coaxial connector (PC flash socket) is sealed behind a cover shared with the Remote Release socket. This cover was so tightly sealed it threateed to break a fingernail opening it the first time, a small screwdriver was needed.

The most important change for professional and enthusiast owners is the long-overdue addition of a menu item which prevents the EVF or LCD live view from showing actual exposure when Manual aperture and shutter are set.  This item is under Live View Display, and is called ‘Setting Effect’ – off or on. While this nomenclature is not exactly transparent, it describes the function well as all picture styles and creative effects normally shown in the finder are also bypassed. The important thing for studio flash users is that you can set 1/125 at f/16 with modelling lights, and see a normal finder view not a black hole. You still must remember to set white balance to Flash or Daylight, otherwise the camera will set it from the modelling light K.

It is best to use one of the three Memory registers (accessible through Menu screen after turning the Mode dial to MR, Memory Recall or Register) to store a manual exposure, fixed WB, low ISO, Setting Effect OFF preset for studio work. Then you can return to any other setting and get your accurate exposure and ‘look’ preview back again.

The internal pop-up flash (GN12) has the usual range of first, second curtain, fill-in, off, auto options; TTL Pre-Flash, ADI, and also manual power control down to 1/16th which can be useful for triggering slave flashes if you don’t have a cable or a wireless trigger (and Minolta shoe adaptor). Because the body is weatherproofed, the flash shoe cover is a softer plastic type which seals tightly. Don’t lose this shoe cover or swap it for one of your others.

And the rest

By the time I’ve written this single review article, it will be one-third the length of the complete camera guide books we used to do for Hove twenty years ago. The Alpha 77 has so much more to discuss.

You will be concerned about high ISO quality, diffraction, resolution, having good enough lenses. I would question whether the new 16-50mm, used wide open, is a ‘good enough’ lens – let alone the 18-55mm SAM also being offered as a kit lens. Just don’t worry. Whatever your existing lenses are capable of doing, the 24 megapixel sensor will give you more of it. Let’s say your favourite lens is really only good up to 12 megapixels. It will be just as good if you use the 12 megapixel Medium size JPEG option on the Alpha 77, and if you do that, the 1.4X Smart Teleconverter function will also deliver a 12 megapixel drawn from the centre of the field only – so most likely just as good.

Rather too distant heron, shot using the 2X Smart Converter for JPEGs (this is actually a clip from a raw file processed in aCR to match). ISO 3200, 70-300mm SSM G lens. Click image for 1000 pixel version

Click image for 1000 pixel 100% size clip from ACR processed version (my density choice)

Click image for Capture One Pro 100% clip from raw (ditto)

Click image for in-camera processed (JPEG Fine, Low level of NR) 100% clip (camera’s density)

I am now shooting with auto ISO set to go from 100 to 3200 instead of 1600, I have started using Medium and Small JPEGs with DRO+ to ensure exposure correction for events type shots, I’ve tried all the lenses I have and the only thought is that I need to stick around f/8 to f/11 for safety. Balancing extra depth of field with a hint of diffraction loss. I’m using the manual focus ‘peaking’ function to check the accuracy of my AF (this shows a coloured line on correctly focused details, when the AF/MF button is pressed in). I am not so worried about low light, high ISO as I first thought. It’s actually as good as the 16 megapixel sensor when needed, and when it’s not, the extra resolution repays careful low ISO technique.

The new tilt, hinge, flip, swivel and cartwheel rear screen is just great for the few times I need to use it. The EVF may consume more power (470 images versus 530 per battery official rating) than the big rear screen but I no longer need to switch between the two for menu and function operations. Because of the new design, all positions found on other cameras from hanging-under to almost flat on top (R-1 style) are possible except facing forwards and positioned to the side. There are firmware or orientation sensor errors, as the imager can appear upside down in more than twisted position. The hinge design makes a vertical grip possible and also allows a wider range of tripods or quickmount plates.

The A77 has all the focus and AE hold and lock, slow sync, focus point shift, exposure over-ride and other key functions I need. It claims to be weatherproof, and having nearly broken that thumnbnail off opening the flash sync cover  I do believe the seal is tight. The card slot door is not so reassuring and I see no trace of any proper sealing, not even a labyrinth design.

I am baffled by Sony’s indecision about ON/OFF switch design, the camera labelling is the reverse of the Alpha 55/33/35 or 580/560 etc, though the action is the same. The direction is the reverse of the NEX-5. But there is one consistency, to turn any camera on the movement is always from left to right – whether Alpha 100, 700, 900 and whether the switch is rotary or a slider. Maybe this is the rule they stick to.

You can not configure the directionality of the two control wheels, as you can with Nikon, and for some reason I have always tried to open or close the aperture by taking the wrong directione. That is because the wheel directions go against the old Minolta protocol that turning the aperture ring to the right opens up, turn to the left stops down.

Like the Alpha 700, the Alpha 77 has magnesium alloy body shell combined with other metal and plastic components. It has the proper strap-lug fixed into the mag alloy casting, like the 700 and 900. This lug and triangle-ring design, as opposed to the slot-type strap fixing of the lesser camera bodies, is always a clue that the structure is based on a good solid metal skeleton. The overall design and balance of the Alpha 77 are as good as any Alpha I’ve used. There are hints of the 700 and also some memories of the Dynax 7xi present in the sculpturing of the body. To those who say it looks a bit like a Canon, yes, it’s true that Canon design has caught up with 1990s Minolta style in the last couple of years…

Conclusion

From the initial press meeting with Sony, where cameras were prototypes and the images were not allowed to be shown, I decided that if I could work for a year with the Alpha 55 and have no problems then the Alpha 77 was a safe investment. The viewfinder is a pleasure to use, though EVFs differ from optical screens in one important respect, that the eye can not compensate for small errors in the dioptre setting. With an OVF like the Alpha 900, I can set the dioptre midway between what’s needed for my sight with and without glasses, and get along fine with either. That can not be done with the EVF and it demands a precise dioptre setting for each. I have found it more comfortable to use without specs, so they spend too much time perched on my head, hanging from my collar or stuffed into a pocket.

It will be another year before I know just how wise the decision to go with EVF SLT models has been. And maybe another ten thousand words.

– David KiIpatrick

Please read the comments for some notes on corrections, which I will continue to make.

 

 

 

 

 

Tamron 18-270mm – a hero, but no VC…

After using Sigma’s 18-250mm optically stabilised zoom on Alpha bodies for a year and more, the first thing which strikes about the Tamron 18-270mm for Sony mount is the lack of the VC (Vibration Control) stabiliser found on the same lens made for Canon or Nikon.

Tamron’s lenses come without a case, but with a custom fit petal lens hood, front and rear caps. Design is clean with a Nikon-like sleeve grip and Canon-ish gold ring. The PiezoDrive focusing is similar to Nikon AF-S/Silent Wave or Canon USM, or Sony SSM, but not identical and on Sony models it can contrast-detect autofocus reliably. Sigma’s HSM hunts.

With Sigma facing patent claims by Nikon – that parts of their OS technology infringe on Nikon VR – Tamron VC is a mature system not so far challenged in the same way. It is also a very solid kind of stabilisation, free from swimming effects, and in this respect closely matches Sigma’s approach. Both are generally more comfortable than Canon’s IS which often seems to attach the image by a bungee cord to the viewfinder screen.

For video work, in-lens stabilisation is generally better than in-body as long as there is a good stable view which does not tend to float free when you pan slowly. For long lens work in general – over 200mm – in-lens stabilisation provides a view which is easier to aim and compose. We had already checked the lens out on Canon, with its smaller sensor area missing off the extreme corners (and therefore doing the lens favoured compared to other brands) but to compare with Sigma’s lens, needed to look at it in Sony mount.

The lack of VC in the Sony version of this lens is regrettable. There is no corresponding reduction in retail price.

Against this the Tamron has a longer zoom range, and it’s much smaller and lighter than the Sigma, taking regular 62mm filters not the unusual and large 72mm size. It also offers Piezo Drive focusing, which almost as quiet as SSM yet as fast as SAM. Small adjustments make a sort of faint clicking sound and focus travel is unusually fast, but a range of freehand refocusing tests using the Tamron showed that it is just as reliable in locking on to difficult targets as any other lens. Usually fast focusing means lots of overshooting or hunting, but not on the Alpha 580 used for this test.

Although the size and weight difference between this and the Sigma doesn’t look all that extreme when photographed in the studio, the heft in your hand (volume) is much less for the Tamron. It does not really seem any bigger than the Tamron/Sony 18-250mm design or the earlier 18-200mm.

The design of the lens follows these, with the LOCK switch for holding the lens at 18mm when walking round positioned for the right hand to operate, a long way from the AF/M switch (which should be used instead of the body switch for changing to manual focus).

This is a better design than the Sigma which clusters the AF/M, OS on/off and Lock controls together on the left hand side. Even after a year of use, both Shirley and I regularly turn the lens OS off, or turn AF off, instead of operating the Lock. All three controls move in the same way and are intended for the same fingers. Tamron’s location of Lock on the right hand side is ergonomically better.

However, both lenses fail to do the one simple thing which would improve such zooms – make the Lock control operate at ALL focal lengths not just 18mm. The Tamron is firm as we test it, so was the Sigma when new, but our Sigma can not now be used to pan with a plane or bird flying overhead unless one hand is used to keep the zoom from collapsing to 18mm immediately the lens is aimed upwards. To do the studio shot, the Sigma had to be taped to keep the zoom extended. Otherwise, it can’t even sit on a table set to 250mm.

You can’t see the sticky tape stopping the year-old Sigma zoom from deflating itself to 18mm every time when placed in the studio for this shot. The new Tamron is still young and firm. But we need locks which work at ALL settings.

It can not be difficult to devise a zoom lock which works at intermediate settings and it would transform the functionality of lenses like this.

Apart from ergonomics, there is no significant difference in build quality. Sigma feels more solid but heavier in action, Sigma’s exterior finish is difficult to clean and collects marks and dust easily. Tamron feels more plastic in build but has a high quality metal bayonet just like its rival.

Performance

Just studying the lens coatings shows why the Tamron can be more contrasty and less prone to flare in some light – especially if you fit a cheap filter to the Sigma and get contrast-eroding reflection for that front element.

The Tamron lens has visibly higher detail contrast than the Sigma, and in the centre of its field produces a very sharp image. The edge of the image lets it down, however, rather badly. The detail is soft at longer focal lengths unless stopped well down (ƒ/11 or so) and red-green chromatic fringes are serious enough to spoil JPEGs. They are not even very well corrected by using Adobe Lens Profile to process from raw (there is no Sony profile but Nikon, using similar sensors, can be selected).

This is a Sony Alpha 55 ISO 400shot, deliberately off centred in composition, with the Tamron set to f/9 (a good compromise between diffraction and stop-down sharpness) and 270mm.

The focus point is away from the centre of the image, and the lens displays good contrast and sharpness, but even here there is a slightly dirty look to the detail and chromatic fringes hit the white edge. This is NOT by the way anything to do with the Alpha 55 translucent mirror!

Here’s the edge of the shot at 270mm and f/9. I feel it would be almost unfair to Tamron to publish some of the worst results I got wide open. This is a defocused distance, of course, but this is also real-life imaging. This is why we did not switch from the bulky, heavy Sigma to the neater, lighter travel-friendly Tamron.

At full aperture and 270mm the performance is markedly inferior to the Sigma at 250mm wide open. The lens has better multicoating but poor field flatness, which creates the softening to the edges and corners.

The Tamron at 18mm has pretty strong barrel distortion which, when corrected using a lens profile in Adobe Camera Raw or Lightroom, lost some of the wide-angle coverage.

At wide to medium focal lengths, the difference is less marked and the Tamron is more equal the Sigma or other ‘best’ superzooms. But this is a lens bought for its extra reach at 270mm; given the performance, it’s not all that much use unless your subject is centred and surrounded by out of focus background.

Tamron at 270mm.

Sigma 250mm view – at near-infinity, the Tamron is longer the Sigma but not quite as much as 270mm would indicate.

Another issue is that of focal length, above and below examples. If the Sigma is a true 250mm (which it is not, all such zooms are shorter than their stated figures) then the Tamron is actually 265mm not 270mm at infinity.

This is unscientific, but the baby owl did not move and both lenses were placed in turn against the wire of its enclosure ensuring the same shooting distance to within a centimetre or so (with lens hoods removed). Tamron at 270mm.

By this distance, the Sigma at 250mm really is no different in focal length than the Tamron at 270mm, due to internal focusing differences. And it focuses closer than the Tamron for a larger maximum subject scale.

Although the close focus is good, at 49cm and 1:3.8 scale it’s not as good as the Sigma with 45cm and 1:3.4 scale – the true focal length at closer distances also seems to be shorter than the Sigma, though this is hard to evaluate.

As for bokeh, that’s not why you buy these lenses:

How many stumps? Wiry would be a fair bokeh description at medium apertures and longer focal lengths (270mm again, above, at f/9).

The Tamron PZD focus does work on the LA-EA1 Alpha adaptor for NEX; it’s not fast, but can lock autofocus perfectly even in difficult light. The Sigma can not do this at all and is not AF-compatible with the NEX adaptor. But… manually focused, the Sigma has OS. Vital!

Most telling is the weight difference when mounted on a light body like the A55. The Tamron is a far better match even if not as ‘good’ a lens – 970g for A55+Tamron, 1400g for A580+Sigma. Check prices, and work out your priorities.

– David & Shirley Kilpatrick


The Alpha 580 – a three-way view

Once I had a quarterplate hand-and-stand camera, vintage 1920s. Attached to the front standard was a small reflex viewfinder, giving a miniature composition you could use at waist or chest level. On the same standard was a folding wire frame, with a companion eye-sighting window flipping up from the side of the body. This gave a direct view from eye level. But for the most accurate framing and focusing, a groundglass screen at back could be used with the shutter open and a viewing hood folded out.

Those three ways of viewing have never been available in a modern SLR. Until now! The Alpha 580 (for which you can also read 560 throughout this review, give or take the sensor) is the first modern SLR to offer three entirely different viewfinder systems, all with their own unique focus and exposure methods. There have been cameras made by Alpa and Praktina which had optical finders tucked in alongside their pentaprism, and Rollei invented a finder which could switch from eye-level to waist level at the flick of a lever. But the Alpha 580 offers three through-the-lens systems and it’s unlikely any DSLR will do so again.
This is a 10-page article – please use the navigation bar at the bottom to move on to the next page, or click the ‘Continue Reading’ link to view as a single long article (this function is not very reliable though and may produce an ‘undefined’ error)

Continue reading »

1 2