Bad science and dissing the Sony A7 FE concept

No doubt everyone’s seen the article on Petapixel which can best be described as successful clickbait – by Sator, essentially claiming that the whole idea of mirrorless full frame is flawed. Well, the good news is that this article is more flawed than the flaws it’s claiming to point out.

First of, let’s simply dismiss the groundless myth that a shorter mount to focal plane register (body thickness) cause any problems with lens design. It simply doesn’t. Nor does an empty space without any body at all. The only aspect of register which can ever cause problems is additional body thickness, as found on single-lens reflex (SLR and DSLR) designs. In the early days of SLRs, it caused so much trouble for the design of very wide-angle lenses that SLR mirrors had to be locked ‘up’ and a lens fitted with a rear assembly almost touching the shutter, sticking right back into the darkchamber.

The quote from Zeiss in the article about the ‘short flange distance’ being an engineering challenge for wide-angle lenses may well be a result of mistranslation as it’s hard to imagine any Zeiss engineer actually saying that and meaning it. This is the company which effectively built the Hasselblad SWC, not to mention the aerial and stereoscopic models based on the 38mm f/4.5 Biogon. And they made the Hologon camera. Flange distance? What flange distance?

Take a look at the optical design of one of the best Zeiss/Sony collaborations, the RX1 series with its 35mm fixed f/2 lens, and you’ll see that Tatsuo Kureishi, Sony product planner, was probably right to say this: “We eventually realised that only a camera with a non-interchangeable lens could significantly increase image quality, since it would allow us to optimise performance between the lens and image sensor.” And what did he mean? That by not even having a focal plane shutter, by having an even slimmer body than the E-mount, a lens which almost touched the sensor, they could engineer something better. And they could align it to perfection. The ghosted product view below says it all. As far as I have been able to work out, the actual body register of the RX1 would be around 12mm, or like the FE mount’s 18mm but with the lens sticking into the body even more than the 5mm depth of the E-mount bayonet.

Now if there’s any reason the A7 series can’t have the same 35mm f/2 as the RX1, it’s down to the shutter assembly and the filter/coverglass pack of the sensors used in A7 bodies. But it’s not to do with the mount, and as this lens proves perfectly, claims that you ‘can not get lens performance without size and weight’ are also made on a weak foundation.

Now the throat diameter can indeed cause problems. Sator quotes a set of throat diameters:

Minolta/Sony A: 49.7mm
Sony E: 46.1mm
Fuji X: 44mm
Canon EF: 54mm
Pentax K: 44mm
Nikon F: 44mm

However, all these are meaningless without reference to the register. Back on 2012, in Issue No 1 of Cameracraft (the quarterly I produced with the co-editing help of Gary Friedman for three years) I printed the register distances then applicable to a range of new and legacy systems:

Pentax Q: 9.2mm    Nikon 1: 12.29mm     C-mount: 17.52mm     Fujifilm X-Pro: 17.7mm
Canon EF-M: 18mm     Sony NEX: 18mm      MicroFourThirds: 19.25mm      Samsung NX: 25.50mm
Pentax 110: 27mm     Leica M: 27.8mm     Robot: 28.1mm     M39 Leica Screw: 28.8mm
Contax G: 29mm     Olympus Pen F: 28.95mm     Contax/Kiev: 34.85mm     FourThirds: 38.67mm
Konica AutoReflex: 40.7mm     Miranda: 41.5mm     Canon FL/FD: 42mm     Minolta SR/MD: 43.5mm
Canon EF: 44mm     Praktica B: 44.4mm     Minolta/Alpha: 44.5mm     Rollei SL35: 44.6mm
Pentax K: 45.46mm     M39 Zenith Screw: 45.46mm     M42 Pentax Screw: 45.46mm
Contax/Yashica: 45.5mm     Olympus OM: 46mm     Nikon F: 46.5mm     Leica R: 47mm

A 46.1mm throat placed 18mm from a 43mm diagonal image sensor clearly isn’t ideal, but it’s for ever better than Fuji’s 44mm throat at the same 18mm. Or is it? Measure the actual mount, and the 46.1mm turns out to be a generous figure including the bayonet recesses. The real circular size is only 43mm and the internal diameter once any mount is fitted is only 42mm. The electronic contact array removes a further 4mm but fortunately not in a bad place. On the Fuji X mount, the contacts are placed to prevent any real chance of a full frame body (the same applies to Canon’s EF-M mount).

sonyjune1526

Sony got in by the skin of their teeth, and it is this mount diameter which actually starts to impose design contraints on lenses and makes some of them larger. A good example is the 85mm f/1.4 GM. That, in its purest form, would be a lens normally positioned >85mm from the sensor with an aperture diameter 0f 60mm. However, many of image-forming rays from this would be obstructed by the E-mount. A complex telephoto construction is therefore needed which reduces the virtual size of the lens aperture as seen from the focal plane and simultaneously moves its apparent location closer (placing the rear nodal point of the lens somewhere between 18mm and 85mm). Most lenses longer and/or faster than 50mm f/1.2 will need some increased complexity of design to condense the exit pupil.

Telecentric design

But against this, there’s a fortuitous benefit. Digital sensors, with their optically active filter/low-cut/IR glass packs, don’t respond well to very oblique angles of ray incidence. If you can make a telecentric lens – one which produces an almost parallel bundle of image-forming rays from a greater register distance – you’ve overcome this issue. That is what Olympus did with the original FourThirds format, which if scaled up to full frame size would have had a 77mm register – and they made their lenses telecentric, which means they produce a relatively parallel ray bundle, with a long back focus. Although FourThirds is now almost obsolete, it did have this odd advantage (also a real challenge which Olympus overcame in the creation of a fully retrofocus 7-14mm zoom with a 38mm register).

The point I’m making is that large size, complexity and weight are not as so many state ‘laws of physics’ relating to making good lenses. They may simply be the most expedient solution. Remove all constraints – as Sony did with the RX1, Minolta did with the TC-1, and Ricoh did with the original film GR – and exceptional lenses can be made to be very compact, almost as compact as the theoretical physics will allow. Indeed it surprised many users to find large glass elements almost touching the film plane in some cameras.

Sorry to be so wordy but it needs explaining. Does it matter? Yes, if you still believe in a Sony A7/FE system which can be as compact as a Leica kit used to be. In fact the E-mount makes it possible to design slightly smaller medium to long zooms and very much smaller wide-angles, and normal sized standard lenses. To adjust your perception, it’s important to take Sator’s camera size comparison images and align the focal plane index marks, not the front or back of the camera body. It’s surprising how much of an A7RII is behind the sensor plane.

sony-wrongcomparison

The screen grab above is from Sator’s article. It purports to compare two 85mms. There’s just one small problem – it doesn’t. The lens shown fitted to the A99 on the right is the 24mm f/2 CZ SSM A-mount, not the 85mm CZ. The 85mm is 1mm shorter but 3mm fatter with a generally chunkier look, and if you align the focal plane index marks, its front would come almost exactly level with the GM lens. It’s still smaller than the GM but if comparisons are to be made this way, they really should be correct, not wrong.

Why other big lenses?

Blame Canon and Nikon. Both have had SLR mirror paths which are very generous, and there are some lenses you can adapt to Canon which will give you a damaged mirror and lens in return (those lenses can’t be adapted to Nikon at all). Makers like Sigma and Tamron have to design all their lenses to clear the Canon full-frame (EF) mirror swing, and if that means adding 5mm to the back focus and then adding even more in glass to the overall assembly to make this work, so be it.

sigma-20mmf1p4

Therefore, when a nice fast 20mm f/1.4 Sigma appears designed for a retrofocus with a 42mm physical clearance, it’s going to be the same size when remounted (if they ever do) for a skinny 18mm register. Actually, the same size plus 24mm of deadspace extension.

If you think that a fast superwide is bound to be huge, try a Voigtlander 21mm f/1.8 Ultron in Leica M fit. It’s not f/1.4, but it’s also the size of your palm not your forearm – and no doubt an autofocus lens could be made much the same. In fact you can buy an E-mount to Leica M autofocus adaptor and turn it into one. My point is that where Sony’s own lenses may sometimes be fairly large in order to deliver the best results from the existing sensors and the mount constraints, DSLR system lenses can be even larger. Where there is potential for Sony native lenses to be small, there’s very limited potential for this with DSLRs. I use a couple of rare examples, the 20mm f/3.5 Voigtlander Nikon fit wide and the Canon 40mm f/2.8 STM pancake. They are exceptions. Within the range from 28mm to 90mm, there have always been excellent and fairly compact lenses for all types of system – Contax G, Canon, Nikon, Pentax, Leica, Minolta CLE. Sony should look to these for inspiration for a core set of lenses, and seem to have done so with the 28mm, 35mm, 50mm, and 55mm. A neat 85mm f/2.8 next in line then?

Adaptors and focus calibration

The general comment that adaptors introduce error is very true, but Sator doesn’t explain why the E-mount is so prone to such errors. Let me do so. It was designed, from the ground up, to be self calibrating and not to require much precision. When the original 16mm f/2.8 pancake was launched with the NEX-3 and NEX-5, that lens had so much focus travel it could go well beyond infinity. Just 0.1mm makes a huge difference with a 16mm lens at f/2.8 – and the actual flange to sensor register of those first bodies was not even accurate to 0.1mm. Sony just made the lenses able to cover the manufacturing tolerance, because the on-sensor contrast detect focusing always got it right. You would never know if a body had 0.1mm or 0.2mm variation from spec, as the lens had more than this leeway.

SONY DSC

Why the A7 system still wins – though now old, a Voigtlander Leica screw original 12mm f/5.6 ultrawide works well using a $10 simple adaptor. A very much more expensive adaptor – $300 – turned out to have incorrect infinity focus.

Then along came awkward early buyers of adaptors and lenses like the Voigtlander 12mm, or for example the 40mm f/1.4 which was the lens that really alerted me to the problem. These lenses are calibrated to Leica focus register with the aim of a hard infinity stop. They are supposed to hit infinity just as the stars in your night sky snap into perfect focus. We found that whether this happened depended on the individual Sony body and also on any adaptors. Manual focus lenses were not self-calibrating! That’s why the Fotodiox Tough-E mount arrived, why Sony tightened up generally on tolerances after the A7 and A7R, and also why makers like Samyang wisely allow a generous over-run past infinity for manual focus lenses (their 12mm f/2 for E-mount is an example, with plenty of tolerance to handle different bodies).

Now all of Sony’s E and FE mount autofocus lenses have continued to be self-calibrating. They do not have hard infinity stops and many don’t form an image properly at all unless powered up (the power moves groups and elements into position, centres any stabilisation group, and finally performs AF). The start-up routines can also involve opening the lens aperture and closing it, often every time the shutter release is touched for first pressure. This is why expert users often prefer to AF using an assigned custom button, not the shutter release. It can save a wasted quarter-second and greatly speed your response time for action and grab shots. It’s also why manual lenses are popular, as these always shave the response time of the camera body down to an absolute minimum.

The mistake some make is to assume the Sony E-mount needs to be as precise and accurate as a 35mm SLR or DSLR. It does not. It may feel like a precision instrument but in fact it’s not. Where an SLR design requires micron precision in alignment of the lens mount and the focus plane, the principal mirror and the secondary AF mirror, the AF module, and the focusing screen – all at once – the E-mount mirrorless requires only two conditions to be met. The axis of the lens should be centred on the sensor, and should be perpendicular to the sensor (and any focus mechanism used should retain this). If this is achieved, all other degrees of precision can be covered by tolerance. Obviously the IBIS, 5-axis moving sensor, does require considerable engineering excellence to do what it does and keep everything right. But unlike the old DSLRs, it will never need you to adjust hidden screws just to get the focus working properly.

The IBIS question

Sator suggests that with such a small throat aperture, the 24 x 36mm stabilised sensor really can’t do its job. We all saw the first demonstrations of AS, or SSS, or SSI or whatever we call it – the sensor apparently gyrating over many millimetres. Those who bought the original Sony A100 and 16-80mm CZ lens also found that sometimes the sensor would be a little more off-centre for the shot and one corner would be sharply vignetted. Well, you might expect that from the A7RII with certain lenses but in fact I’ve never observed it.

The IBIS never allows the sensor to sit off-axis. It will constantly correct for your wavering hold, but always return to a centred position. It’s not trying to dive 5mm past the shadow of the lens throat or outside your lens image circle, even if it can do so in theory. The real stabilisation corrections made are within a millimetre or two, and even that is a considerable blur when there are over 200 pixels in one millimetre of travel! Consider what a 200 to 400 pixel blur looks like. What IBIS is doing often corrects shake producing blur in the region of 2 to 20 pixels.

So, the reply to the apparently valid point that the whole sensor size, stabilisation movement, lens throat size, and lens image circle combine to make Steady Shot Inside a guaranteed failure can only be this: it works. It’s like a bicycle – look at it, think about it, and it’s not promising… but in practice it works very well. It also works, however its firmware interfaces with lenses, to use OSS optically stabilised Sony lenses very successfully.

Conclusion

The Leica screw system was probably designed with its 39mm lens thread much smaller than the diagonal of the film gate because it was originally made for an 18 x 24mm ‘single frame’ (later called half-frame) format. When a fixed lens was replaced with the screw mount, the inherent problem of having this smaller than the film diagonal was missed. That gave later generations the vignetting Leica Visoflex and the limited range and performance of all lenses over 135mm focal length!

To some extent Sony has done the same thing and simple large aperture long lenses might in theory vignette. In practice they don’t. The limitations are nothing like the Leica or Contax rangefinder mounts were in the past. The argument against full frame mirrorless, or the specific design of the Sony FE/A7 series, ignores many things including simple points like volumetric heft (looks very different from overhead views of the camera footprint) and multi-body kits. I use A7RII, A7 and A6000 and all three bodies together barely take up the baggage space of a single pro DSLR.

So, just relax. The Petapixel article was not a very carefully constructed one or a balanced argument. You’re going to find many different form factors of digital camera in future. The Sony full frame mirrorless system is just one. Because Fujifilm, Olympus, Panasonic, Nikon, Pentax, Samsung and Canon have all made design decisions for their mirrorless offerings which rule out full frame it’s not going to have ‘competition’ right now, and all users of other systems will find reasons why it doesn’t work for them – or take the plunge.

David Kilpatrick

Subscribe to f2 Cameracraft our bi-monthly magazine – worldwide subscriptions by fast airmail, premium ultra-heavy print quality and the best of British printing technology (it even smells good).

20/20 vision – Sony Alpha 58 review

In the last year two cameras have been through my hands and impressed more than any others with the quality of their sensors. Those cameras were as different as they could be – the full frame Canon EOS 6D, and the pocketable Sony Cyber-shot DSC RX100. They have one thing in common, 20 megapixel sensors.

Of course there is no connection; a 24 x 36mm Canon sensor and a 8.8 x 13mm Sony sensor are very different. But if you shoot at ISO 125 on both cameras, and process from raw with a normally exposed scene, you will be hard pressed to tell the results apart.

SONY DSC

So, when Sony – proving a giant-killer with the 1.0” format RX100 sensor – creates a budget DSLT model with an APS-C 20 megapixel sensor it would be reasonable to expect that this would outperform the RX100 and in the process prove superior to the 24 megapixel Alpha 77, 65 and NEX-7. It might even match the Alpha 99.

The Alpha 58 was announced at the end of February 2013, and some major websites had still not reviewed it by June. This is the first new Sony APS-C silicon for two years. It’s not found in any other body. Why the lack of urgent interest?

Perhaps, like me, the entry-level grade of the A58 has been responsible. It’s by far the worst Alpha body ever manufactured, and the first to have a plastic lens mount where machined metal is normally used. The whole physical feel of this Thai-made camera is inferior; it even has a slightly rough external texture which picks up handling marks the moment a store customer (or cynical on-line orderer intending to try, but return for a refund) so much as touches it.

SONY DSC
It has a relatively low-resolution, small rear screen (2.7 inches and 460,800 pixels) which is in the simplest and most restricted kind of up/down angle hinged mount. Against this economy, though, you need to balance a better OLED electronic viewfinder based on a one-inch 1,440,000 pixel display and a change to the new Sony Multi Function Accessory Shoe (without a protective cap, and without the adaptor for the Minolta/Sony Auto Lock shoe). It also uses the larger FM-500H battery common to all other current Alpha models, not the smaller FM-50H used by the NEX and also by some previous Alphas like the A55.

What is really new about the A58 is the price. I was not interested in the camera, though curious about the new sensor, because it was $600 US or £499 UK with the most basic lens , a new 18-5mm f/3.5-5.6 SAM II with quieter and improved internal focus motor (delivered, like Canon kit 18-55mms, without a lens hood). Then while helping a professional friend decide how to replace an A350 used for some unique underwater photography where the Quick Live View AF function has no equivalent in other makes, I looked into the A58.

SONY DSC
It was on sale, in Britain, including VAT and properly sourced from Sony, for under £350. The actual price of the kit was only £291 before added VAT sales tax. This was £100 cheaper than the lowest price of the RX100, less than any other DSLR on the market with anything like the same specification. Bear in mind what a replacement Sony battery costs (around £50) and what an 18-55mm fetches (officially more, but in practice around £100 new) and this body was coming in at about £150. That’s a point and shoot compact price.
So I bought one.

First impressions

SONY DSC

The packaging for the A58 cuts down on many things – recent Alphas have been festooned with stickers, this one has a single swingtag and a sticker on the rear LCD promoting connection to Sony’s webserver to obtain PlayMemories Home, the kiddy-friendly name for what is probably quite functional software, if you happen to use a Windows PC.

SONY DSC

When you have charged the battery and loaded it, the first time you turn on a similar message fills the rear screen. Everything works as you expect from an Alpha, though some mysterious glitch stepped the entered date back by two days. You can only set to complete minutes, not seconds. Some defaults are set to ‘on’ including Smile Shutter and Auto Object Framing, and for my use these were disabled and the recording mode set to shoot RAW+JPEG, sRGB.

SONY DSC

The supplied lens is a cheap product glitzed up by the addition of a metal microskin on the front bezel, behind the rotating rubber rimmed zoom and focus tube, 55mm filter thread. The SAM focus is quieter than the original version. The plastic-on-plastic mounting action is smooth enough, but when changing between the 30mm SAM macro (very noisy and jerky motor in comparison) engagement of the contact array was not always positive and the lens had to be twisted back and forth once with the lock pressed to enable AF.

SONY DSC

The A58 is set to use electronic first curtain and SteadyShot Inside sensor-based stabilisation, both switched via the main menus. The Function button, which can access most regularly used settings does not reach these directly (a second menu screen is involved, very easy to use). There are also direct access button-positions round the rear controller for the important Drive, Picture Effect and White Balance settings, and a dedicated ISO button close to the shutter release. These can be customised to a degree, like the stop-down/intelligent preview button on the camera front which can be changed to work as a focus magnifier.

SONY DSC

What’s initially surprising is that the shutter sound is noisier than many cameras with flipping mirrors. It’s not a pleasant sound either, mechanical in a clockwork-motor way. It all happens after the shot has been captured, as you can tell if you make a long exposure. Maybe the lightweight mostly plastic construction of the body, with its minimal metal skeleton, fails to damp the sound.

The viewfinder has the same contrast and dark detail failings as the A77, and in some ways the old A55 finder provides a more useful view. The rear screen is not very bright, and there is no auto brightness setting, just a 5-step manual control. In return, whether you use the LCD or the EVF makes on a tiny 10 shot difference to the 700 frames expected from one battery using the former. This stamina is double that of an EVF camera using the smaller battery type and restores a more than acceptable battery life per charge to Sony’s consumer entry level.

SONY DSC

What is excellent about the finder is the ocular. It has been designed to give extreme eye relief – 26.5mm from the eyepiece glass, 23mm from the rubber frame surround. This compares to 19mm/18mm for the same data on the A55 (eyepiece glass not well protected from dust and light ingress, but eye needs to be close) and 27mm/22mm for the A77 (very deeply recessed and shaded ocular, reasonable eye distance). Part of this is down to display module sizes: 1.0 inch for the A58, 1.2 inch for the A55, 1.3 inch for the A77. Matters are further confused by the A55 failing to use all its EVF for the image, so the eye also sees a large near-black surround except when using menus which then expand to fill it.

Overall, the EVF looks like a view which is A55 size but A77 quality, like using a cropped section of the A77/99 2.4 megapixel EVF module. Sony has made this much easier to use with spectacles, or with the camera held an inch away from your eye. So although it’s not the best finder ever, it may be one of the best choices for anyone who has trouble with eyepoint. I found the EVF very blue at its neutral point, and set two notches of warming up to match the eye’s view.

SONY DSC

The controls are no different from any other Alpha, they don’t feel rough or weak, and every button push got a response as expected.

SONY DSC

The cover for the single dual purpose SD/MSDuoPro card slot is not a tight seal, and does not need firm action to open. The synthetic rubber single seal door over the microphone jack (no manual level control), Micro USB matching the RX100, and Micro HDMI ports is a good flush fit. There is also a Minolta/Sony unique DC in socket with similar cover.

SONY DSC

What’s missing is the old Minolta and later on Sony remote control socket. Instead there’s a pretty clunky wired remote which works via the micro USB port. It looks like a version of a Chinese generic. This connection offers the only way to get wireless remote control, with a suitable device, as the camera lacks the IR receiver and has no Drive Mode for it.

SONY DSC

The body shape in the hand is just a little more cramped than the A55, far more so than the A580, both cameras we have and both ‘replaced’ in the Alpha line up by this one model. I’d say it was less of a good fit to my hand than the classic Minolta Dimage series bridge cameras, or the Nikon 1 V2. Both of these were around to compare directly.

The critical bit

Then after getting acquainted with the camera, comes the question of the sensor performance. Here, the viewfinder gave the first clue that unlike the ‘sweet sixteen’ CMOS this 20MP newcomer was not going to move any goalposts. In domestic lighting, the level of noise in the EVF is higher than the old A55 and comparable to the A77.

However, I chose to compare the A58 with the RX100, because of the great advances made in the RX100’s very small 2.7X sensor. The results show an interesting divergence from minimum (100 for A58, 125 native for RX100) ISO to maximum. There is almost no advantage to the A58 up to ISO 400. Both cameras, with similarly adjusted raw conversion, yield clean images and it’s not even easy to tell ISO 400 from 200 or 100. If you click the images below, you’ll access a full size original conversion from raw (ACR).

A58, ISO 100, full sun, shadow to highlight from raw

RX, ISO 100, deep shadow to full sun on white, from raw

A58, ISO 400, full sun on wide tone range, from raw

RX100, ISO 400, wide tone range in full sun, from raw

As you increase the speed, the 58 rapidly shows its advantage and by ISO 1600 has both a structure which looks finer in terms of granularity, and with far less chroma noise. Where a carefully processed ISO 800 from the RX100 might match a carelessly handled 800 from the Alpha, at 1600 it’s very difficult indeed to close the gap. By 6400 the RX100 is not really useful but the 58 can still deliver a fairly normal looking shot – it does begin to look like a desperate measure. Then you have 12,800 and the absolutely pointless 160,000 top setting which seems to be there for advertising purposes.

Taking into account differences in colour rendering, the advantage of the larger sensor is levelled if the RX100 file is reduced to 4500 x 3000 pixels and moderate chroma noise reduction applied. In relative terms, the small sensor is better, because it’s actually only a little over one quarter of the size of APS-C.

Compared to the 16 megapixel Sony sensor (NEX-5n, A55 and many later models as well as Pentax and Nikon variants) the 20 also fares pretty well. It has higher levels of luminance noise but minimal chroma noise. It’s not easy to reduce the luminance NR without softening detail, when using Adobe Camera Raw or Lightroom. It does not harm sharp detail much if left alone; if this sensor actually has an AA filter, it’s very weak.

Macbeth_ColorChecker_RGB

This a MacBeth ColorChecker rendered using the official sRGB values.

iso200colourchecker

This is an ISO 200 shot on the A58 with the greyscale white balanced to match the above, Iridient Raw Developer conversion using Iridient’s A58 profile. See later comments on colour and reds.

As for dynamic range, it falls off as the ISO in increased. At ISO 100 or 400 a typical high contrast sunlit scene is perfectly recorded, with only bright specular highlights clipping to 255-255-255. It can handle everything from shadows on dark areas to direct light on white. A few practical comparison shots show that the RX100 can do exactly the same things – indeed, precisely the same areas clip at the highlight end.

This simply indicates to me that Sony has matched the processes used in the two cameras against a common exposure and contrast standard. I’d have the rate the JPEG engine of the RX100 a little better than the Alpha, and images seem to need less work. Against the Alpha 99, the 58 gains some significant processing speed in raw converters as it’s producing 20 megapixel 12-bit files compared to 24 megapixel 14-bit.

Click this for the full size to see detail.

Compare this RX100 shot. It’s interesting.

A hidden benefit of the 20 megapixel sensor is that if you use Adobe Camera Raw, this program offers a range of preset optimised output sizes converted directly from raw, which can be previewed at 100% of their actual pixel size before conversion. All 24 megapixel cameras have this as their largest output size, all you can do is downsample. 20 megapixel cameras offer a 25 megapixel output option, as do 16 or 18 megapixel models. The RX100 has already proved to me that it can make a 25 megapixel image that’s hard to tell from a native A77/99 image. The same goes for the Alpha 58. It can be set to export to this larger size, and if you use a top grade lens and low ISO, the result will be better than a native 24 megapixel at higher ISOs with a medium-quality lens.

Overall, I find it hard to rate the new 20 megapixel sensor as better than either the classic 16 megapixel ‘sweet spot’ sensor or the maximum 24 megapixel APS-C, but it is as competent as either of these in its own right. I guess the truth is that at all these resolutions, superb image quality is possible.

Other aspects of performance

Since the A58 uses the 15-point, 3-cross AF sensor which has been proven ever since it first appeared in the A580 and A55 it has identical performance; fast, very accurate AF down to EV -1 (50mm f/1.4). The exposure metering is, again, the familiar 1200-zone Sony system and works down to -2EV.

The actual focusing mechanism works no better with SAM or SSM lenses than with screw drive. It’s not the best ‘old’ mechanism in there and it lacks fast/slow AF setting, but it’s fast for certain. In low light although AF will lock, it needs a good target. Throughout my use of the camera I found the focus the least accurate and consistent of any Alpha body I’ve used, leading me to question whether I had accidentally set the lens to MF, so many pictures were clearly focused on some other plane than the subject, nearly always a definite back focus. The AF module is officially the same as the A55, A580 and so on. I can’t help thinking it is the same design but perhaps, like the rest of the camera, built to a budget.

The A58 couldn’t really back focus this shot at f/8 but it took three shots to get one sharp.

Click the RX100 (f/5.6) example too, to see the real difference.

Switching between rear screen and EVF using the eye sensors, or if you have the rear screen off just turning on the EVF, is good on this camera. Its balance tends to prevent the eyepiece sitting against your chest, and thus avoids accidental activation, but it’s always brought the EVF into action by the time your eye is close enough to use the finder.

Regrettably the EVF and rear screen both lack the instantly visible high resolution needed to know whether your image is pin-sharp. Even the far superior finders and screens of the A77 and A99 do not give you the same awareness of this as an optical finder. The good news is that Focus Peaking can be turned on. This really isn’t sensitive or accurate enough unless you magnify the image, and much of the time, you simply don’t have time to do this.

So, the A58 is capable of pin-sharp images and you can be sure under the right conditions with the right technique that you won’t be short changed out the 20 megapixels you expected. But a lot of the time for everyday shooting it’s not very good at getting AF pin-sharp, and those same 20 megapixels do their best to show any error clearly.
In practical situations, ISO 400 is as noise-free as ISO 100 and gives you the chance to use a smaller aperture for more depth of field. The 18-55mm SAM II lens is not very sharp at 55mm wide open, and it proved optimistic to expect f/6.3 or f/7.2 to be much better. The old ‘one stop down for zooms’ rule works well enough. The 20 megapixel sensor shows signs of slightly softening at f/11 so the sweet spot for me has to be around f/9 or f/10.

The A58 has slightly warm tones overall and pinkish flesh colour

The RX100 on the same scene is more neutral or cool

You can click the images above for full size versions (same applies to all those shown in link frames like this).

As for colour, you’ll be happy if you have always like Canon DSLRs. not so happy if you were either a Sony (sunny!) or Minolta (full spectrum) sensor colour fan. This sensor shows every sign of having relatively weak RGB colour filters and a non-linear response, with underexposed shadows on higher ISOs in daylight tending towards magenta. It’s rather too easy to get putty-pink skin tones and a certain lack of subtelty in sky gradations, though blues and greens are not bad. Subjects like red flowers test the colour discrimination of the sensor to the limit.

Holyrood gardens

It’s truly intense – but is it realistic? Camera profiles for raw conversion may tame this.

Let’s just say that every other current Sony Alpha model, and many past ones, will yield more visible difference between close hues. This is what you might expect from the more densely populated 20 megapixel sensor but, as ever, I’m left wondering why the little RX100 seems able to yield better colour (whatever DxOMark.com may say – but they also put the low light ability of the RX100 way below its actual performance).

At present there are no camera profiles available when converting files using Adobe Camera Raw, and the Adobe Standard colour seems to handle reds from the A58 badly (this is why I refer to Canon – the reds look much the same as problem Canon reds of the past). I don’t believe that red paint, red clothes, red street signs and red flowers are all are one type of red and when clipping warning is turned on, almost all the reds clip.

Shutter and flash

The shutter of the A58 is able to synchronise short-duration fast triggered flash, such as a thyristor camera top gun, up to 1/250th on manual without any shutter curtain clipping; at 1/320th, a shadow intrudes slightly on the frame. This is a better performance than indicated in the specifications, but for studio flash (mains powered) I would recommend working at 1/125th and for Sony/Minolta dedicated flash at 1/160th.

The shutter itself does not operate or make any noise whatsoever until AFTER the picture is captured when you use ‘Electronic First Curtain ON’ setting. The capping shutter blind has a cycle (close and return) of approximately 230ms overall in single frame mode resetting the camera ready for the next shot, or 115ms for continuous shooting which fits in with 8 frames a second fastest (cropped) frame rate. If you use the mechanical first shutter curtain, this adds exactly 50ms or 1/20th of a second to your release lag, which is not as easy to measure but seems to be in the order of only 20ms (1/50th).

Overall, this makes the A58 one of the most hair-trigger responsive cameras you can possibly own for capturing action – or would if the AF were faster and more reliable. Pre-set focus, use manual exposure, and you can trigger exposures with this camera as fast as you can think – just like the A99.

With its built-in flash or dedicated Sony flash, there’s the usual small delay caused by preflash. You may think the shot is being delayed more, because the shutter operates after the exposure, and then as the finder returns to life you get about 1/30th of a second of ‘review’ of the shot taken even with the 2s or 5s (etc) image review disabled. This happens all the time with the camera, the first frame or two of the finder refresh is a fleeting glimpse of your captured shot, and it’s useful. With flash you may be viewing a dark scene, the finder itself is blacked out when your flash fires, but this sudden bright image looks almost like a delayed flash through the eyepiece. Of course it is not, this is just an impression.

The built-in pop up flash becomes a rather aggressive AF illuminator when flash is active and the camera has trouble finding enough light for an AF lock. You certainly do see the effect of this through the finder, a surprisingly long and bright burst of light. It must drain the battery fast.

Flash exposure, long a problem with Alphas, seems predictable. A pile of black camera bags produces a full exposure (histogram hitting the buffers at the right hand end) while a white paper document in the middle of the frame results in one stop under. No doubt users will find specific flashguns or situations which produce wildcard exposure. That’s why you should always enable DRO+ Automatic or something like level 3 when shooting with flash. This dynamic range contrast optimisation process can produce great flash pictures out of the camera but remember it only works well at lower ISO settings, do not go over 800 and expect DRO+ to keep you smooth noise-free image.

The A58 appears to allow DRO to be used at higher ISOs, which earlier cameras often lock out because of its effect on shadow noise. However, both the printed manual and the downloadable handbook contain many inaccuracies and ambiguities; even Sony’s specification for the camera on-line has problems, listing standard and magnified views in the finder instead of eyepiece glass and surround against the two eye-point figures.

Wireless flash operates in the usual way, with the pop-up flash acting as a commander once paired by first fitting the remote flash, turning on, selecting WL Flash mode, and removing the remote. This is now a 20-year old Minolta technology updated – something which took Canon fifteen years to catch up with, after which they progressed further. The Alpha wireless flash works but it’s frozen in time. At least, with the optional adaptor, you can use earlier Minolta and Sony flashguns of the HS(D) generation and later.

HS is the high speed burst mode (long duration resembling continuous light) and the A58 can use HS flash at all shutter speeds up to 1/4,000th. The A58 has a useful Slow Sync function which delivers and automatic dragged shutter setting according to the available light, and a Rear Curtain sync as well. The camera may, with the built-in flash, switch to a slow longer recycling time even if you load a fresh battery when shooting flash intensively. This is to prevent the camera (not the flash) from overheating.

Studio compatibility

One reason I obtained an A58 to look at was because Ian Cartwright, a friend of mine who shoots models and babies underwater, had obtained an Alpha 580 on my advice to replace an A350 only to find that this camera forces a strange blackout delay of almost half a second when using any dedicated flash. The A350’s otherwise similar Quick Live View does not have this peculiar firmware fault. I can confirm that the A58 fires in real time, and unlike either of the other two models, can be used with PocketWizard or an infrared trigger. That’s because the finder view can be switched to ‘Setting Effect OFF’ which defeats exposure simulation and gives you a bright view even in manual with setting like 1/125 and f/11 under dim modelling or ambient light. The A58 can be used in the studio as easily as the A99, because of its ISO hot shot compatibility and this feature.

Dried roses

For this studio shot I chose not to use flash, it was lit by my Interfit 3200 tungsten outfit (great for video) instead. The colour rendering matters little because the image is adjusted in processing to give this look.

As to whether you would ever want to use an EVF camera for studio work, that’s another matter. I have bought a replacement Alpha 900 after three months trying to use EVF for studio set-ups and temporarily reverting to my A700. It’s not just the quality of what you see when composing and adjusting your studio shot (stray hairs over a face or a clothing fibre landing on your still life are just not visible with EVF) it’s the need to have power saving permanently turned off to keep the screen or finder awake as you do all the lighting and reflectors, background and subject adjustments. Nothing is more annoying than having to half-press the shutter to wake up your camera every time you go back to check – and with the A58, the shutter release is so light it’s easy to take a shot instead of waking the finder view.

The A99 can be used tethered and plugged in to AC, with a USB cable to a remote capture Mac or PC, and a live feed to an HDTV monitor. Do that and the business of setting up and adjusting a studio shoot becomes far easier with live view. I just don’t do enough work of any kind to justify that, it’s quicker to keep using the old familiar glass prism. It looks as if the A58 can be used the same way, joining the A77 and A99 by having PC Remote capability and HDMI previewing, while the A900/850/700 are the only other choices in Alpha history able to use PC Remote.
This does open the door to using a netbook, for example, as an intervalometer timer or remote release. There is no App for iOS or Android but the PC Remote control panel is well designed to fit a smartphone. There is no Wifi in the camera (it has good compatibility with EyeFi cards, invoking special display icons).

Video

Due to the softness and lack of AF sensitivity of the 18-55mm SAM II lens, my couple of quick test videos in real situations were not stunning but also not too bad. The sound quality is reasonable without plugging in my Rode Video Mic, stabilisation of video is very good indeed, and by using the dedicated video setting I was able to set my own shutter and aperture. You can also lock out the movie button except when the mode dial is set to video, preventing accidental video clips.

If you want the camera for video, either the 18-135mm SAM lens or even better the 16-50mm f/2.8 SSM (quiet fast focus) will do much better than the 18-55mm. The A58 lacks the highest quality video encoding of the A77 and A99, but you can get the vital requirement of 25/30fps at 1080p, the second highest level found on other Alphas. The clip above is at best quality with the 18-55mm; it took some fairly extreme action (the car driving right towards the lens) to persuade the AF to bother to try to track, most of the time it was telling me, hey, that’s good enough, no need to refocus… or even focus to start with.

Special functions

Although the A58 has been trimmed down in some ways, other aspects have been improved, compared to past entry-level cameras. There is no wireless remote drive mode, and no 2sec self-timer, so unless you buy the unusual Micro USB wired release you have to use a 10sec timer for shake-free tripod work.

Bracketing is only three frames, but the range is now large – 0.3EV, 0.7EV, 1EV, 2EV or 3EV steps. HDR Auto can also use a 6EV span (±3EV). You can not control the auto ISO range, but it’s a reasonable 100-3200. If you shoot JPEG and choose multishot noise reduction, an auto 6400 may be selected, and some of the Scene modes may also enter this range. But if you shoot raw, you have to select ISOs from 4000 to 160,000 manually which makes them harder to get by mistake.

There are many picture effects, both single and multi-shot, in the A58. One of the more interesting is Rich Tone Black and White, which uses three shots to build a gradation resembling a traditional darkroom print.
The sensor does not appear to support sub-frames, or cropped raw files, in the same way the A99 or Nikon D600 can do. The maximum frame rate for continuous shooting is 5fps for full size raws, but the buffer is minimal and the best I could get was four frames in a burst before a major pause and intermittent resumption, never at 5fps. On raw you get click-click-click, off to make coffee, click, take a walk round the block, click, remember to turn the lights off before going to bed. It’s that bad. JPEG Fine, which delivers 4 frames at 5fps, then becomes intermittent and variable in capture speed but a little faster than raw.

To get anything better, you must convert the camera into a 5 megapixel 3X factor (2X crop of the 1.5X sensor) by setting it to T8 (Tele 8fps) continuous mode on the main control dial. This delivers about 8.1fps for 24 frames on a 95MB/s SanDisk card, then slows to capture around 5-6fps in a regular pattern of two frames at 8fps, hesitation, two more and so on. On a slower card, Transcend SDHC, I got 12 frames continuous and a slower more regular tail. Memory card speed is clearly critical for getting the best from the A58.

Since you can’t get a 5MB cropped raw, exactly how this mode functions is a bit of a mystery as JPEG images are produced via an intermediate raw file – that’s how things work. So inside the camera, 24 frames can be processed and cropped in 2 seconds – but it can’t even manage one second of unprocessed raws at 5fps. This indicates the processor is fast and the input buffer big enough, it’s the output buffer and card interface which causes the bottleneck. Card interfaces and drive assemblies are third party products normally bought in by the camera maker, while the main processor is their own (or a dedicated design based on a Fujitsu module or other OEM).

This camera is extremely low cost and I think this is simply one area where cost savings ended up reducing what could have been a great specifiction and performance.

Digital and Clear Image Zoom

The A58 has a Zoom button, like a Cyber-shot DSC RX100’s zoom control that goes beyond the mechanical range of the zoom. Since you can’t go beyond the zoom on the lens itself, you go to the tele extreme, press the zoom button and a bar appears on the displays. Up to 1.4X magnification, you get a cropped shot (JPEG only) but this crop fills the EVF/screen and is enlarged by interpolation to 20MP. Up to 2X, you get Clear Image Zoom which is profiled or custom interpolation, similar to software packages which can enlarge JPEGs better if they have a profile for the camera used. Up to 4X, the rest is ordinary Digital Zoom which means the resulting 20MP image has really been created from a 1.25MP area of the sensor, and it shows.

Fine JPEG, normal shot

Interpolated Zoom 1.4X. 18-55mm at 55mm.

Clear Image at 1.9X (all at f/8)

Digital zoom to 4X.

I made some tests with the 18-55mm and its vague focusing and overall modest quality lowered the bar for the digitally zoomed range. Then I tried with my extremely sharp Sigma 70mm macro. I think the 1.4X range is acceptable for all normal uses, the 2X range is almost acceptable, beyond this the softness overpowers any possible reason to want a 20MP output file. There is a mark on the zoom bar showing the change from resized and Clear Image (1.0-2X) to Digital Zoom (2.0-4.0X) but I was unable to get the zoom to fix on 2.0X, instead it insisted on using 1.9X or 2.1X but placed the 2.1X on the ‘safe’ side of the mark.

70mm macro, raw shot at f/10

Fine JPEG of same ISO 200 shot.

1.4X interpolated zoom.

2X Clear Image zoom

4X Digital Zoom. Still 20MP…

As expected, the A58 has Sony’s excellent sweep panorama mode, and just about every other Sony original technology around from face recognition and smile shutter through to auto framing (an intelligent crop which keeps a copy of your uncropped JPEG too) and AF object tracking. Its Intelligent Auto and Super Auto modes will serve the beginner and general family photographer well.

The A58 has sensor cleaning and does vibrate the sensor on shutdown, not on switch on; this is not listed in the specification, which just mentions the anti-static coating. Manual cleaning is possible and Sony make two notes of interest – they advise blower cleaning the back of the mirror before lowering it (so clean both this and the sensor in one step) and they say that you can not shoot with the mirror raised. My camera had no sensor spots on delivery.

Future expansion

The A58 shares with the NEX-6 and Cyber-shot DSC RX1 the new Multi Function Shoe, and some of the accessories for this shoe are futureware. All these cameras lack the GPS found in the A99. The Multi Function Shoe’s interface includes pins to connect a GPS device and record location data as you shoot.

alpha99-shoe

Despite my affection for the robust qualities of the little Alpha 55, the Alpha 58 does more and when armed with my 16-80mm CZ lens makes a good travel camera. For that, I want to have GPS. So of all the possible future accessories for the shoe, this is the one I hope Sony will produce soon. Other possible accessories are a Wifi remote shooting module (the interface could allow image preview remotely) and a PocketWizard or similar wireless flash trigger. The shoe interface might even enable uncompressed video streaming to external recording devices, or back up between the camera and an external SD card or USB stick. It can also feed an external larger video monitor or a mic/headphone module which might have auto gain over-ride for sound recording – or perhaps these functions may be combined one day in a video/audio adaptor.

These are the prospects which this one change in the Alpha system brings, yet there is no sign that Sony is rolling out MFAS accessories. It’s also true that each camera’s own MFAS may have missing pins, or differently assigned pins (that would be seriously bad planning). You can not, for example, use the EVF of the RX1 on the A99 shoe, though both cameras have 24 megapixel sensors and the same EVF display resolution. The camera does not recognise it.

SONY DSC

Made in Thailand – not a bad thing, and Thailand has a big camera industry with Nikon, Sony and others. But this does feel like the lowest cost, most pared-down offering ever in the Sony DSLR/SLT lineage.

Changing the market

It is a pity that a camera with a brand new sensor and many advanced features and functions should ever have been designed down to the lowest price-level by reducing the specification of far too many components, from the lens mount and body itself to the displays and the buffer and card interface.

Sony’s manual and general approach to the camera menus and built-in help indicate that it’s targeted at what Americans would call a ‘soccer mom’ market. Well, your own kids are always beautiful even if the rest of the internet community groans inwardly every time another snapshot of infant overfeeding is posted to support how wonderful dad’s new camera is. They are always polite and agree.

Same goes for this camera – for those who acquire it as a new addition to the family, it will be the best thing ever made. And in some ways they will be right, nothing else comes close for the money. Unlike the sprogs, the Alpha 58 has inherited many desirable genes but suffered from malnutrition during its gestation. It could have been a robust, capable semi-pro camera in the tradition of the A580, the last Sony Alpha to have an optical finder.
Perhaps the 20 megapixel sensor will appear in a higher level body. How about an A68? For me that would be close to home (look it up on a UK road map!).

– David Kilpatrick

Sony Alpha 77 review – tomorrow today

It must be two years ago, at least, that an Australian sports photographer confided he had seen a Sony prototype which would blow away everything – an Alpha which could shoot at incredible frame rates (he mentioned 15fps) and follow focus. It may have been something unlike the Alpha 77, which follows focus 12fps with locked preset exposure, or in any appropriate exposure mode at 8fps. Or it may have been an early experiment. Whatever it was, the 77 is close to this rumoured prototype .

The Alpha 77 is a successor to the Alpha 700. Here is beside my old and well-worn 700.

The viewfinder

The Alpha 77 is a camera that points the way for future development, whether of DSLT (Sony ‘Translucent’ mirror technology) or entirely mirrorless SLR-mount bodies. It’s the OLED viewfinder with 2.4 megapixels of self-illuminating RGB which changes the game. It makes the transition from optical to electronic viewfinders likely for everything except a limited choice of professional optical viewfinder DSLRs. EVFs will not be unique to Sony and it will continue to develop in resolution, colour fidelity and refresh rate.

But this type of viewfinder has a specific limitation. Unlike earlier EVFs, the Sony OLED has a threshold below which it simply turns the pixel illumination off entirely. To save battery power, this is set to a relatively high black level and clips the three-quarter tones straight to d-Max. All EVFs are slightly unsatisfactory to the human eye because there’s no real shadow detail to see if you switch your glance away from well-illuminated parts of the view. The new OLED has dead black shadows and it doesn’t matter how much your brighten it, the cutoff is based on exposure level in the image.

If you own an A55/33/35 then the new finder is so far removed it might as well be an entirely different era, not just a generation. The area surrounding the huge visual image is dead black, not milky and luminescent like the A55. The shooting information is set neatly outside the image, not overlaid at the edge overlapping picture detail. The colours are bright and the information text, though smaller to the eye, is crisper and far more legible.

One comment (added after this was first published) – the A55/33/35 may be considered better in very low light. In good light, the OLED/24 megapixel combination is excellent. In low light, it shows noise until focus and exposure are confirmed by shutter pressure, at which point the view clarifies and the noise reduces. In near darkness, its shows very strong noise, mainly red, which largely obscures any visible detail. In conditions where exposure was 15 seconds at f/2.8, ISO 100, using the A55 and A77 side by side the A55 was better. It looked grey and flat, but surprisingly detailed and bright into shadows which were too dark to penetrate by eye. The A77 gave a contrasty screen or finder image with little useful detail, nothing in the shadows, and very strong noise. Clearly the CMOS sensors are responsible for whatever level of detail is visible, and the A55 sensor seems to me have a couple of stops more lift to tones on the threshold of its sensitivity. The EVF types differ in the A55 showing more shadow detail with lower contrast, and lower colour saturation so the noise does not look bad. Bottom line, the A55 is half way to night vision; the A77 is like turning on an old UHF analogue colour TV, no signal, just noise.

There will be users who complain that having vital information just above and below the image area means they don’t see it because of their specs. But the A77 has the best eyepoint and visibility for this info of any model to date. All I can say is that if you ensure you are using the EVF correctly, you will always be in touch with what the camera is doing.

This shows a ‘busy’ finder display – in fact, everything overlaid on the photo here can be turned off leaving just the active focus point (a single one, if you use centre spot focus) and the neat information bars above and below the image area. The rest of the field is dead black too, not milky grey like the Alpha 55, and the contrast is high. This image is dropped in and has no connection to the information displayed!

The result is a very graphic view of your composition. Despite the impressive size of the apparent viewfinder image, it is not as large visually as the Alpha 900. The A700 for example is 95% field at 0.90X of a 1.5X sensor coverage, a viewfinder ‘size index’ of 0.57X (0.95X0.9/1.5). The A900 is 100% of full frame at 0.74X, index 0.74X. The A77 is 100% of 1.5X format at 1.09X, index 0.726X. It’s therefore closer to the A900 than the A700.

The A77 eyepiece glass is much closer to the eye than the A55 or previous SLR models, and the upper positioned eye-sensor turns the finder on and off with precision saving power but causing no delays.

But has Sony got the figures right? The A55 claims to be 1.1X and 100% view. Each camera has a different eyepoint – 27mm for the A77 compared to a mere 19mm for the A55 – but this should not be allowed to influence the stated apparent magnification. Placing one camera to each eye, the A77 has an almost 20% larger apparent viewfinder field (linear) than the A55 and about 30% larger than the A700. It is just a fraction smaller than the A900 as the calculations indicate.

It looks to me as if the A55/35 manual misrepresents the EVF size in that camera, it very clearly is not larger than the A77. Perhaps they include the dead space not used for the image but for data. In the A77, the data display is tight and efficient and it can show everything you ever want including the ISO in use when you select Auto ISO.

All the other figures agree. It also makes the A77 finder view an almost perfect match for Nikon’s full frame DSLRs, which have a slightly smaller apparent screen size than the A900.

The less-shadow-detailed aspect of EVF works for composition much the same way early Leica viewfinders did. The scene is simplified, and this tends to concentrate the eye on impact and simple compositions. Using the A900 alongside the A77, I was struck by the way the A900 puts you in touch with texture, colour, subtle light, and fine details. The A77 reduces the world to simpler tones and connects you to shapes, composition and impact.

As for flicker, shearing when panning, clarity of focused detail – well, these are all limitations, but much reduced in this new finder. What is not so limiting as the A55 or the earlier NEX models is the speed of startup from sleep. The A77 finder really does go to sleep (the A55 is very good at failing to switch off) and wakes up so rapidly, as your eye approaches the finder, you don’t miss the shot. Combined with the mere 1/20th second shutter lag, this SLT gets back to the responsiveness of classic non-AF SLRs.

You can cycle through these displays or choose to skip one or more when pressing the Display button (there’s a menu item to configure exactly what information each press shows you, with separate settings for the EVF and the rear screen). These diagrams from the manual do not represent the finder very well. Our colour version, using a finder overlay file supplied by Sony, gives an accurate view of what looking through an A77 finder is like.

Here I am, I’ve written stacks about the viewfinder and not even begun to describe it fully. Tell you what – go and find one, try it. I can’t photograph it adequately (I have tried) and it would be exhaustive to go through the deep menu settings of the A77 which let you decide for example how many different information-display setups you scroll through when you press the Display button. Don’t want EVER to see the horizon level guage? Then set the camera to skip it. Hate the graphic display of f-number and shutter speed scales against each other? Deselect that too.

 

From the Alpha 77 Karma Sutra – left, position for portrait photography; right, position for those who like to video themselves and still look as if they are in eye contact with the viewer.

And then there’s the rear screen. It has a double hinge and rotate action, of which more later. It is a top grade screen, 3 inches and nearly a megapixel. If you plug an HDMI monitor in to the camera, that will take over providing a better solution for studio or video previewing. Even a 20 inch or larger HDTV set looks sharp when fed from the Alpha 77.

The menus of the A77 require the attention to website presentation detail best reserved for the galley-slaves* of dPreview. Trust me, if there’s anything which can be set on any other Alpha, it’s probably settable on the 77 or not there at all. I’m sad to see that I can only control my auto ISO range minimum between 100 and 12800, and my maximum between… 100 and 12800! Of course this is great. I can have auto ISO over any possible sensible range but not ISO 50.

*Queried on dPreview forums – I’m an ex-newspaperman. Galleys are proofs of type (or the metal itself) and if you’ve ever worked on the TV listings or the Sports pages, you’ll know what it means to be a galley-slave in editorial terms – form before function, and function before fun! Well, I can have fun. I do not have to reproduce every single screen and menu because there’s no big boss saying that’s how it is done! It’s great work that dPreview undertake. But as someone else has already done it, I prefer to spend my energy doing the stuff they haven’t done. Then you can read both.

ISO 50? What use is that, with less dynamic range than 100?* It’s a great deal of use. In my studio with powerful flash – which this camera can cope with perfectly, having a setting to over-ride exposure simulation in the EVF/screen and do auto gain for modelling lights – it gives me an extra stop instead of being forced to work at a setting like f/13 or get overexposure. Outdoors in bright light it combines with the 1/8,000th top shutter speed to remove the need for a 4X ND filter to get superwide apertures, but due to reduced dynamic range, it’ll still clip whatever highlight would have been clipped with an overexposed ISO 100 shot. In the studio I can control my contrast to use it well.

*This is Sony’s own statement in the manual, page 139: “The recordable range of the brightness of a subject (dynamic range) is slightly narrower for areas where ISO is less than 100.”. DxO Labs tests actually say that colour depth, tone depth, dynamic range and signal to noise ratio are all at their best if you set ISO 50, but they also show that ISO 50 is really ISO 63 overexposed a bit and ISO 100 is really ISO 80 underexposed a bit. Where that leaves the intermediate 64 and 80 settings on the camera we can only guess.

As well as all the info in the finder and on the back LCD, you get this top plate LCD which means you can close the back one. Even when the camera is asleep (power save mode) the sensor must still be receiving and handling the image, as the exposure display will change when you move the camera around. I’d guess this is a low power mode which also enables the system to continue to monitor exposure between frames during sequence shooting.

At first I did not fall in love with the Alpha 77 – when my purchased firmware 1.02 version body locked up on me in front of one Canon and one Nikon user I was just a little angry with it. It could have done this somewhere quiet, on its own, without spectators. Even now with firmware 1.03 I am not sure it won’t repeat the cataleptic fit, but it shows no signs of doing so. See my section on the Movie mode later on, though…

The SLT mirror and ghosting

I’ve tested the Alpha 77 in the most demanding lighting conditions. Sony says the SLT mirror (a very thin film of plastic stretched on a frame) has new mirror and antireflection coatings. They have also paid extra attention to the design of the AF module and the interior of the darkchamber, to avoid reflections.

Though some colour fringes on the bright water definitely hit this 16-80mm CZ shot (along with a colour bokeh issue making those in the foreground magenta and those to the rear greenish) there was no hint of any ghosts or flare in dozens of shots taken in conditions like this.

This light is extreme, and the patches of sun and reflection are placed exactly where the Alpha 55 tended to produce flare. The Alpha 77 shows no sign of it, and has not in any of our photographs so far.

As far as loss of sharpness goes, I do not believe there is any more significant sharpness loss from the SLT pellicle than there is from, for example, the rear filter permanently fitted into a 300mm f/2.8 Apo G tele. Both are between the lens and the sensor and both are plane clear optical elements. If anything the glass thickness and distinct double air to glass surfaces of a rear mounted filter make it far more likely to degrade an image than the SLT. Almost any filter you fit in front of the lens is going to have a greater effect (unless you spend a stack of money, a really bad effect on 24 megapixels – we’ve replaced our older Minolta, pre-digital Hoya and other filters with the latest Sigma EX DG after testing them).

This is just a routine test I ran at all ISO settings to check colour and tonal response. Not noise. I already knew before doing this that the noise thing was a non-issue for the simple reason that this sensor beats anything else out there; I’ll start pixel-peeping for noise when another maker comes along and shows they can do this pixel density better. The colour is also very consistent indeed across the ISO range and the feathers in the mask retain the expected detail up to ISO 3200.

This picture was taken using a setting I quickly discovered is just perfect for news, PR, presentations and images needed quickly from events – the Small JPEG in camera, with DRO enabled, at ISO 3200. Sampling down to one quarter of the file size (still large enough for an A4 print) creates a dead sharp, low noise image. Photographers do some good, occasionally – this is a cheque for £3000 being presented to DJ Dave Lee Travis for the PACE Centre charity, by the Master Photographers Association. Their annual dinner happened just a week after I got my Alpha 77. I was confident enough to risk taking all my press and PR shots on the new camera.

And this is a 100% pixel level view of that shot without any post processing.

Input and feedback

Then again, having to set up the camera and realising the full extent of the customisation possible through the Menu and Fn buttons, I felt depressed. This was almost like handling a Canon 7D – one of those cameras where, if someone passes it to you, you can never be sure if it has been configured only for photographing flocks of ibis flying behind bare poplar trees. Would its 19 AF points and 11 cross type sensors do the 7D trick of locking on to a sweet wrapper someone dropped on the lawn instead of the wedding group a yard further away?

Well, yes. The A77 can do that sort of wrong stuff if left on wide area focus – but it doesn’t light up the wrong AF points in the finder to fool you, and it does not require programming of AF preferences to avoid proximity or response speed errors (both Canon and Nikon pro models can disappoint if used ‘out of the box’, and need their defaults changing depending on your typical photo situations). Instead, if provides very accurate feedback about which sensors are being used. And it has Face Detection which really works, because this is a live view camera 100%. I have never liked Face Detection much until the SLT EVF generation arrived. Even then, not much.

Face detection kept the focus on photographer Paul Cooper (right) accepting the president’s ribbon of the MPA from Henk van Kooten (left) despite Henk’s focus-target jacket moving into the foreground of the AF zones. Taken by stage lights at ISO 3200

I had to take a few shots where a person receiving a presentation was facing the camera, and the presenter often stepped into shot with back of head to the lens. With Face Detection on, the A77 never once switched focus to the nearer person, and always stayed locked on to the subject facing me. This is a situation where the above-mentioned makes, if allowed to use wide area or multi point AF, tend to shift focus to the foreground intruder because as conventional DSLRs they don’t have Face Detection in optical viewfinder mode.

The auto exposure of the A77 seems to be more closely linked to active AF points than any previous model. It may have 1,200 metering zones on the CMOS sensor but it will bias strongly towards correct exposure at the point or points of focus, especially if the central point coincides with a very bright are. I do not mean it is literally spot metering. I mean that, for example, in my office with medium lighting and a very bright computer screen if the camera is aimed at the screen the exposure in matrix mode, with centre spot focus, becomes correct for the screen and the rest dark. When the screen is moved away from the centre zone, exposure increases by two stops even though the overall image contains about the same brightness.

What I’m seeing may not be the same sort of meter-linking-to-AF that is found in the Canon EOS 400D, as an example. This will give you over or under exposure if the focus point hits a dark or light area. The A77 biases towards avoiding overexposure. A dark subject at the central focus point does not seem to brighten the image the same way a very light subject, like a screen, darkens it.

This is not like separate metering cell TTL, the classic Minolta honeycomb. It isn’t even like a camera with centre weighted or spot optically fed meter cells. Every point on the sensor is a spot meter even though you can only ‘spot meter’ from the centre. Every point is equally sensitive down to EV–2 (ISO 100 with f/1.4 lens) and up to EV17. It is four times more sensitive as a matrix/centre-weighted meter than the Alpha 900 and a staggering 16 times more sensitive than A900 spot metering mode. It also has +5 to -5 EV exposure compensation compared to the A700’s+/-3EV (A900 – 3EV, expanded to 5EV by later firmware, but the 700 was never improved – see comments, originally I referred to A900 as 3EV either way, as that’s in the manual). And whatever things the SLT mirror does, it seems to feed the new AF module plenty of light – it’s able to focus in conditions half as bright as the A900. Added comment: the A77 metering is four times as sensitive as the new Canon D1 X, so although that camera has amazing sensitivity up to ISO 204,800 the A77 will actually meter exposure in lower light.

So, after a couple of weeks, I began to realise that the A77 was giving an even lower failure-rate than the A55. I had learned which settings to prefer – three zone focus for example is far better than old-style wide area and almost makes single centre spot focus redundant. I was finding that exposure is generous but never highlight-clipped, because it’s read from the actual imaging sensor; you can trust the simulation given by the EVF, too, and adust the +/- over-ride with confidence.

The camera stopped being complex and started to suit my declining mental powers. Life is a curve. You start just learning to set shutter, aperture and focus. In your prime, you want to set twenty different things for every shot and switch from P to A to S to M with C or S or A and -2 sharpness and ten stop HDR then portrait look for the next one. Ultimately as the brain cells sneak off for a nap you find good old shutter speed, aperture and focus do you just fine.

If you need reminding in big print, let the rear LCD see the light of day, and you get this big clear information pane on demand.

Now some cameras have fooled me, there are no dials and they just hid this stuff from me so I’d end up with bad things like the optically soft set of landscape pix I shot at 1/2000th and f/5.6 (wide open) on the NEX-5 last month. But the Alpha 77 with its top plate LCD info display, its ‘come to life’ burst of finder shooting information when you take first shutter pressure and confirm focus – well, it is constantly reminding me what I am doing. I know other cameras and other Alphas have finder displays, even the NEX was probably telling my longsighted eyes what it was up to, but the Alpha 77 presents working information better than any camera I’ve used. It is simply a very clear and well designed display both in-camera and on the rear screen.

If you enable image review, the SLT cameras slow down. I fold the rear screen to face the camera back. I have turned off image review. I shoot with confidence just as I would once have done on film and sometimes I do not check a single image until I’ve copied the card contents to my computer.

Button pushing

The Alpha 77 has loads of buttons despite Sony’s one-time insistence that they planned to have fewer mechanical components in future. There are nine push buttons, one rocker button and one control wheel on the back of the camera alone; five push buttons, one collar switch, one shutter and control wheel on the RH top. Then there’s the stray stop-down button, the lens change release and the AF-mode switch living round the mount.

Rear screen folded away and protected – that’s how I use the camera all the time. Plenty of buttons to push – and you can have fun swapping their functions round to confuse your friends!

Several of these buttons can have their functions modified so they no longer do what it says on the silkscreened white or blue print (white for shooting mode, blue for playback). If you are particularly odd you can even swap round functions and confuse people who borrow your camera (shades of Canon!). If you are relatively normal you can leave this well alone. You may customise the stop-down preview button to show the final picture effect instead (stop-down plus picture style and shutter speed result) and through the menus you can change the behaviour of lens-resident Focus Hold. The instruction manual omits to mention these are on the lens, and not on all lenses – some owners have spent ages looking for the Focus Hold button which does not exist on the camera.

What’s most odd about the A77 is that three of the main dedicated-function buttons are completely interchangeable. ISO (next to the shutter) AEL and AF/MF (under your thumb) can all be changed to do anything from the following long list of functions:

AEL Hold*
AEL Toggle*
Spot Meter with AEL Hold*
Spot Meter with AEL Toggle*
AF/MF Control Hold*
AF/MF Control Toggle*
Object Tracking
AF Lock*
Aperture Preview (stop down)*
Shot Result Preview (final picture simulation)*
Smart Teleconverter*
Focus Magnifier*
Memory
Exposure Compensation*
Drive Mode*
Flash Mode
AF Area
Face Detection
Smile Shutter
ISO*
Metering Mode
Flash Compensation
White Balance*
DRO/Auto HDR
Creative Style
Picture Effect
Image Size
Quality

*The entries I’ve marked with an asterisk already have their own dedicated buttons for which these are normal function choices (AEL button, for example, covers all the first four but can only do one function, preset in menus).

There is one button you may want to modify if you own lenses with a Focus Hold button. The AF/MF button, by default, performs this function with most lenses (it switches to MF when pressed, the same effect as holding focus). So it’s almost a spare button, given that there’s also an AF/MF switch on SSM/SAM lenses and a body AF/MF/S/A/C switch too. Since it sits right next to the AEL button and closest to the rear control wheel, it a natural choice for any function you might want to use in a hurry.

You can not change the function of the Finder/LCD manual switch button, the Drive Mode, the White Balance or the Exposure Override. You can switch the Preview and Smart Teleconverter buttons between two functions each only. The Fn button accesses all the parameters you can’t reach directly through any custom button (like setting the Auto ISO range) and most that you can (like Face Detection). Its full function list is:

Memory Recall (only present when mode dial set to MR)
Scene Selection (only present when mode dial set to SCN)
Movie (only present when mode dial set to Movie)
Drive Mode
Flash Mode
AF Area
Object Tracking
Face Detection
Smile Shutter
ISO and ISO Auto setup
Metering Mode
Flash Compensation
White Balance
DRO/Auto HDR
Creative Style
Picture Effect (only active for JPEG-only shooting)

The Display button can not be customised and only serves to cycle through Display setups – but you can customise those, and thus what the button does for you (above, Menu to set which finder display states you wish to cycle through, ticked). The Help (?) button can also not be customised, which if you don’t want potted hints and tips makes it redundant in shooting mode, though it serves as the Trash button when reviewing images. The Playback also can’t be customised, nor can the Menu button (which can return to Last Used or Top by setting a preference), nor the top LCD illuminator button. This one is interesting because it toggles – the panel light remains on until the camera goes to sleep, or it’s pressed again to turn off.

In use, I found there was one button missing which would make a huge difference to this camera. The 12fps ultra high speed shooting mode is only accessible through the mode dial. Because of the way the camera handles bursts of frames and buffering, it would be useful to be able to shoot normally in any mode (single frame, or other continuous speed) and switch to 12fps by holding down or toggling a button (preferably holding down, say, the AF/MF lock reassigned for this purpose).

Here’s a neat touch – as long as you have a lens with no MF/AF switch on it, you can set M focus on the body selector, and pressing the AF/MF button will do autofocus for you, letting it go will lock the focus back to manual. That’s another reason to like my 16-80mm CZ on the A77 – ideal for studio products or architecture, or indeed for landscape. It does not work with the 18-55mm SAM. There is in fact a bit of an overall mess with SAM, SSM, and standard lens focus types including the assignable DMF (direct manual focus) to the AF-A mode. There are some lenses where you are warned never to use body MF setting always only to use the lens switch. What you will find is that some menu items are greyed out, and some buttons don’t work, if a mismatched combination is set.

Lens compatibility

The new 16-50mm f/2.8 is enabled for in-camera lens corrections

This leads to the general question of lenses and the A77 generation. It seems there’s some additional information chipped into some but not all lenses which enables the Lens Correction function (Vignetting, Chromatic Aberration and Distortion) for in-camera JPEGs. Raw files are unaffected, and I don’t know if this information is used to enable better panoramas but that would be a practical fringe benefit. But since the 18-55mm SAM, 55-200mm mk2 SAM, and 18-250mm (an old design relatively) are in the release firmware along with the 16-50mm SSM maybe there’s no info in the lenses themselves, and future firmware will add more.

The oddest incompatibility is the manual’s statement that Front Curtain Shutter should not be set on ON for ‘Konica Minolta’ lenses (added note – see Comments at the end of this article, some discussion of this). First of all, the description of Front Curtain Shutter is misleading. When this is set to ON, it means NO front curtain shutter – electronic gating instead. When it is off, you are using the physical Front Curtain, the blades uncover the sensor to start the exposure. The manual does make it clear that by Front Curtain Shutter Sony means No Front Curtain Shutter.

But what is a Konica Minolta lens? There are very few, nearly all were made by Tamron. Konica Minolta never even got round to rebranding the Apo G lenses, they just changed the box and the lens cap and left Minolta as the name on the lens. I have a 28-75mm Konica Minolta, a 17-35mm Konica Minolta and at one point I had an 18-200mm, and of course, the kit 18-70mm and various horrible full frame plastic lenses like the 28-100mm. I think there are 75-300mms in KM guise.

Everything else prior to Sony was Minolta because KM simply never made any, or if they did, it amounted to no more than a box label change. To confuse things, some of these Konica Minolta like the 18-70mm, 18-200mm and 75-300mm became Sony lenses without a single substantial change. And many Minolta lenses became Sony lenses while retaining a heritage right back to pre-D days or the origins of the AF system itself. The 28mm f/2.8 is the most obvious example, the 50mm f/1.4 another.

Why would an electronic front curtain produce overexposure or inconsistent exposure only with Konica Minolta lenses? Given the very fast response time (1/20th of a second) and high speed of the system (1/250th flash sync, 1/8,000th shutter) the only thing I can think of would be the speed of aperture closing action. It is also something which would be invisible in revised lenses; maybe the Sony 18-70mm kit lens actually has aperture blades which close 50 milliseconds sooner than the KM equivalent.

This would also mean earlier Minolta lenses, not just KM, might produce overexposure (aperture still not fully closed when exposure commences) or uneven exposure (aperture continues to close down during part of the electronic progressive gate-opening). The same would apply to many third party lenses.

I’m pretty sure this is why the warning is made, and that singling out Konica Minolta lenses is an error. Any one individual lens may have sluggish diaphragm, indeed a common cause of overexposure in all A-mount lenses is incomplete stop-down. So the advice should be don’t use ‘Front Curtain Shutter’ set to ON with anything except Sony A-mount lenses – or test your independent lens before use.

A warning about not setting Micro AF adjustment with third party lenses is given, as usual. This is because the makers borrow lens identity codes. The Sigma 12-24mm f/4.5-5.6 Mk1 has the same code as the Minolta/KM 28-80mm kit lens. This issue will also affect the behaviour of the Auto Lens Correction register, which in our body does not have any effect on the CZ 16-80mm for example but does correct the new 16-50mm. I would guess ‘correctable’ lenses have extra information, older and third party lens won’t. So don’t bank on this function fixing JPEGs from your ‘heritage’ of early Sony glass!

Sigma has issued a list of lenses which are known to have AF problems with the Alpha 77/65, and will upgrade them free of charge. You can read the list here: http://www.sigma-photo.co.jp/english/news/info_111014.htm. It includes the 18-250mm HSM OS, which we have. Ours does not seem to have any issues at all on our A77 with firmware 1.03. I’ve also tested the 8-16mm and 100-300mm OS, 70mm macro and 70-200mm f/2.8 HSM Macro MkII. These are not in the warning list and all seem to work well, even though they do not work reliably with the Alpha 55.

The A77 has Fast/Slow AF options and I’ve used Fast. The accuracy of the AF is much better than any previous Alpha model.

Autofocus and exposure

The 19-sensor, 11-cross AF module is not most densely populated – the A900 has 10 extra hidden ‘tracking assist’ line sensors bringing it up the same total (they are there, they just don’t have screen markings) and its central double cross sensor is technically the best type around. But having eleven cross sensors does more good in practice.

AF has a new mode, Zone. This creates three groups of sensors left centre and right which act like mini wide zones. Wide Area focus can, of course, locate widely spaced details which are concurrently in focus. Zone identifies the zone with the most focused points, then works within this area. It can use information about the change in confirmed focus within one zone to help track the subject into the next zone. It also gets the exposure right more of the time.

Because the sensor is feeding image data to an analysing computer, Face Recognition and Object Tracking can be linked to the AF. There must be some theoretical speed penalty – something must be slowed down by microseconds if you enable these functions. I can’t detect it. The only slowdown is the time you take to press the central controller button to register an subject for tracking. Smile Shutter is also possible. My subjects normally scowl so I don’t use this.

The focus point – here, centre focus spot aimed first at the family and then held using the shutter release to recompose the scene – helps determine exposure. The 1200-zone metering has correctly placed the baby’s white clothes in the value range 250 to 254 RGB.

The most reliable and accurate focusing method remains central single spot focus, or local selectable single spot. Now that all of these are cross-type, there is no compulsion to stick with the centre and recompose, but it’s a habit hard to lose. I have already observed that the metering in spot mode is 16 times more sensitive than spot metering in the 900, and I would guess that when the system biases matrix metering values to the centre focus point, there’s a related gain if not that much. There is a proper near-IR AF illuminator in the camera body – Minolta tradition lives on! Without flash, it really is possble to focus in the dark and the EVF does a very grainy but usable job as a night vision viewer too. The illuminator also enables focusing on plain surfaces as it projects a pattern.

The SLT mirror of the 77 diverts 30% of light to the AF module, but this is actually more than the old semisilvered patch and double mirror system used to let through in SLRs. The AF sensor itself may not be any more sensitive, it’s simply getting a much better image feed. This 30%, by the way, means the light reaching the sensor is reduced not by the 1/3rd to 1/2 a stop sometimes mentioned, but by .6 of a stop or nearly 2/3rds of a stop. 50% would be one stop. (See comments at the end of the article for some more precise figures on the mirror split provided by Dr Daniel Oi).

My experience so far with the camera indicates that exposure is very reliable over the entire EV range. I simply leave it on the matrix multi-zone setting. The EVF warns me if it’s going to bias too much to the focus point.

High speed shooting

This brings me to the aspect of high speed sequences. No cameras in this class has ever achieved 12fps, let alone at 24 megapixels. In theory you get 13 raw or 11 RAW+JPEG frames before the camera slows down, and it looks as if the buffer must hold about 320MB. The camera does not have a dual processor like the Alpha 900, and it does not benefit from the robust performance of fast CF cards.

Autofocus is provided in Hi drive mode, along with AE (8fps, accessed via the Drive function button, in any shooting mode). Using this shooting speed you have full control.

In Speed Priority AE mode (the 12fps setting on the mode dial) the focus is locked before frame 1 if you have the camera set to Single (S) AF, but in exchange for this, you can set both the ISO and the aperture. You can also set these if you use Manual focus.

If you set the focus mode to C (Continuous) then both AE and AF continue during shooting. You can set the ISO, but not the aperture, so the ISO is your only way control the shutter speed. Added note: the Canon 1D X has now bettered this record high speed shooting by providing 14fps. This mode in the Canon locks both AE and Focus with the first frame, locks the mirror up, and you must use Live View on the rear screen to compose the shot. For focus tracking with viewfinder, the 1D X is limited to 12fps.

12fps is very impressive. It makes a huge difference in action work. I often test sequence shooting on the local races, and I quickly found that even tracking a horse (necessary to keep it in the frame at all for more than one shot at 3fps) certain frame rates just produced two stages in its stride, repeated. The horse was galloping at 2.5 clops per second and I was shooting at 5fps. With 7fps it gets better, 8fps or 10fps still better and with 12 fps you reach the point where four different positions of the legs are recorded.

Also, it becomes possible to aim the camera at a fixed spot like a hurdle, and fire, capturing several positions of the horse before it leaves the field of view. It is not as necessary to pan with the subject every time to get more than one shot.

Animation of three hand-held frames, cropped from a Sigma 70-200mm shot taken at 70mm, showing how 12fps captures very fast action in relatively small steps. At 5fps, the second frame would have the horse leaving the right-hand edge.

In practice, you certainly get your 13 raw or 11 R+J shots at 12fps or the slower AF-capable Hi 8fps setting – or indeed at the slower 3fps rate. But you don’t get anything like the same continuous shooting capability as past models even if you knock the JPEG size right down. You’ll get around 18 Normal Small JPEGs (6 megapixels, lowest quality) at 10 to 12fps before the rate slows down to an erratic 3fps with occasional half to one second pauses. For raw files, after your 13-ish burst is up, you may get between 0.5 and 1 frame per second with occasional one to two second pauses. With an average SD card (20MB/s write) you will wait 15-20 seconds after the last shot before being able to shoot fast bursts again.

Here’s another sequence, this time as stills without the annoying animation you can’t turn off 🙂

And here, below, is a 100% crop from the original ISO 800 raw file processed using Adobe Camera Raw 6.5 (Sharpness 50, Radius 0.5, Detail 0, Masking 0; Luminance NR 25, Luminance Detail 50, same from Chroma NR)

Sharpness? The 12fps C-AF setting forced the Sigma 70-200mm to be at f/3.5, two thirds of a stop down from full aperture, but also gave a shutter speed of 1/6400th. I could have perhaps picked another detail with slightly more punch, and looking at all the shots, my prefocused point was actually about 1 metre behind the horse (if the AF refocused during this sequence, I can’t see any evidence in the images). The 8fps or Single-Shot AF 12fps settings allow control of aperture, and I know that f/5.6 would have cleaned up. Just remember you are looking at a section of an image something between 6ft and 8ft wide, it’s very easy to view a tiny clip like this as if it was just another digital image.

I tried one technique, shoot 2, 3, 4, 6 frames with brief pauses – as if catching different moments of an event, in bursts. Even though I spread the 10fps bursts over a ten second interval, by the time I had totalled 20 raw frames I was down to the single shot per second or worse situation.

To follow up, I shot a burst then allowed the buffer to write for about 8 seconds before firing again. I got seven frames at 12fps, which fits in with the card in use taking about 15 seconds to finish writing from a 13-frame burst.

For one of the horse racing tests, I shot one burst of frames and as the camera slowed down, two horses fell and two jockeys were injured, one requiring a stretcher. I was unable to get ANY pictures of the incident as it happened, and by the time the Alpha 77 was able to shoot again, the ambulance crew was on the track. Each race gave me just two chances to shoot a burst so I’m afraid that testing every single setting combination on the camera was not possible.

Panorama speed mystery

There’s something I don’t understand about the raw, file and buffer handling of the Alpha 77. Shooting panoramas – which have to start with exactly the same frame by frame 24 megapixel data readout – I counted 42 frames apparently firing at something close to the 12fps maximum, then creating a panoramic JPEG, and the finished 6.7MB JPEG file was written to card and the buffer cleared before I had time to see if the light was still on.

What exactly is happening here? How could the processor and the buffer somehow handle the throughput of the wide panorama with at least double the number of continuous burst frames I could get with even the smallest JPEG – and then do all the computing to assemble the panorama and write it to card, leaving me ready to shoot immediately?

I ask this because when shooting panoramas with the Alpha 55, my 15MB/s SanDisk Ultra II SD card failed – it was not fast enough, could not handle the data and became corrupted. Clearly panorama shooting is data intensive one way or another. But in the Alpha 77 it appears to be allocated buffer and processing power which is denied to more useful motordrive sequence shooting.

Movie shooting does not enjoy the same fast buffer clearing. Shoot any higher quality movie beyond a mere blip on the button, and you can’t fire a still frame for some seconds. With some HD-movie systems, you actually shot a still frame during the movie and lose nothing except a couple of movie frames; with others, you can end the movie by pressing the shutter and capturing a still. In yet other makes, you can shoot a still but lose two seconds during the movie. All these solutions are valuable when still shots could be important. The A77 movie function does not permit any such choice and may block all shooting by occupying the buffer to card writing process for many seconds.

And, in reverse, you can not initiate a movie while the card write light is on. I tried this with one of my horse race test subjects. I decided I would shoot the front runners going over a hurdle, get my 12fps burst, then do a few seconds of movie of the stragglers who reach the spot a few seconds later. Although I could have shot further (faltering) still frames, movie shooting was blocked out with a warning message telling me ‘Writing to Memory Card – Unable to Operate’. When raw shooting was set, this lasted many seconds, but interestingly with the small JPEG option only two or three seconds were blocked out.

After my tests of the high speed shooting functions, I conclude that to cover some sports events well you would need a pair of Alpha 77s, or the 77 and some other camera – and you would need to keep a close eye on the card writing light. As a result of the performance with my SD cards giving write speeds around 20-30MB/s I ordered a SanDisk 45MB/s Extreme Pro, and plan to get a 95MB/s card when they are available.

Added after receiving the SanDisk Extreme Pro 16GB 45MB/s card: burst shooting is not extended, using raw it varies from capturing 10 to 12 raw frames at maximum rate, sometimes with a single frame jumped (two groups of 5-6 frames) which never happens with my ordinary Transcend 20MB/s card. Buffer to card writing is reduced to around 10 seconds from around 20, but at least with this extra card speed, there is no way to extend the approximate 1 second unbroken raw shooting burst.

The Alpha 65 and 77 are the only DSLR/T cameras so far made which use the USH-1 SDXC specifiction to allow writing data at this kind of rate. They are ahead of the card game. But they need to have this capability. Anyone expecting to make full use of the high speed drive functions and best video quality of the 77 with cards like the faithful wallet full of Transcend 16GB Class 10s we have been using will be disappointed.

The dedicated Movie mode

On the mode dial of the A77 there is a movie position. This does not mean it has changed, like some Canon models, to be incapable of shooting unplanned movie clips – you can do this at the press of a button, like other Sony models. What the Movie icon means is that you gain access to manual control of ISO, shutter and aperture. As a penalty, you lose AF.

Why? That is easy to answer. The AF sensors in the 77 are rated for f/5.6 aperture use. Default movie apertures range between f/3.5 (typically set on fast lenses) and f/6.3 (well, with an f/6.3 zoom lens there is little choice). AF works best in this range. If you really want to shoot AF movies at f/2.8 on a 200mm lens, try by all means. I have tried at f/3.5 and for every clip which has a smooth focus transition, there will be another where the SSM, SAM, HSM or plain old screw drive makes a sudden shift.

So if you want to work at f/1.4, leaving focus to AF would be a disaster. Apart from making constant shifts, there’s a big chance of hunting. I worked with the 24mm f/2 SSM Carl Zeiss for a while, and this lens does not find focus easily in low light with any camera. On the A77 for video it was auto-set to between f/2.8 and f/4 in low light. Video AF happens at the actual working aperture, not wide open like still AF. Being stopped down a little improved the 24mm’s accuracy.

And if you want to work at a smaller aperture than f/6.3 – say f/16 for a deep focus effect with a superwide lens – then AF simply would not work at all. The Manual Focus restriction placed by using the Manual Movie mode is necessary despite the howls of protest it’s produced from those who don’t understand the technology involved. A side benefit of setting Movie mode on the dial is that your view through the finder is cropped correctly to the HD area before you start filming, which makes composition easier – see below.

In the Movie position on the Mode dial you might believe you can use the self-timer. The manual ticks that box. We had to check it, but although you can set the Drive state, including self-timer, doing so has no effect on Movie shooting. Nor can you shoot stills with the Mode dial in this position. Various other manual details, such as indicating flash can be usedin this mode, are also incorrect or there’s a small firmware glitch with the camera. I would expect the shutter release to be operational with the mode dial set to Movie, so that stills could be captured. It is disabled and you can’t take still shots at all if the dial is in this position. Be warned!

Not only that, but after I had pressed the Self Timer 10 second setting when in Movie mode, the LCD top display showed a single frame symbol plus the 10 from the self-timer mode, and the shutter release was disabled even after returning the mode dial to Program or other settings. The Drive mode had to be reset to get it out of this tangle.

As for the instant Movie button, it’s not in the best place – a long thumb reach for on and off actions to start and end clips and the placing tends to make me tilt or move the camera needlessly. When adjusting the viewfinder dioptre to switch from working with spectacles to working without, it’s so close to the dioptre control I push it occasionally by mistake. I would like the Movie mode to switch operation to the main shutter release OR the movie button.

It’s worth noting that picture effects (see later pages) can be applied to movies, as can all other image adjustments, and will be seen in the finder as you shoot.

But what you won’t see until the moment you press the movie button is the working HD movie area. It is a surprisingly fierce crop from the full sensor, not just a top and bottom slice to HD 16:9 format. This is required for the Steady Shot digital, pixel-shift based movie stabilization which does not move the sensor like regular SS. It reduces the 1.5X area to something like a 1.8X area, not as much ‘zoom in’ as using the 1.4X smart converter but enough to cut heads and feet off subjects you have pre-composed using the full finder. There are indicator marks on the display, that’s true, but you will find them hard to see in many conditions even if you remember to use them.

Shot with the 24mm f/2 lens – no way to move back or zoom out for the movie, but plenty of space you would think for the 16:9 HD crop.

This is what the HD movie viewfinder field switches to when the Movie button is pressed (slightly re-composed horizontally but not cropped at all). The movie stabilization need the surrounding pixels. It highly effective, both through the live viewfinder and when viewing the results, and totally silent unlike sensor-shift SS. It also does not warm the sensor assembly up as much.

A caveat to movie shooters. Select the highest quality AVCHD 2.0 formats (the camera will warn you) and you may not be able to play them, burn them to disc other than Blu-Ray, or import them into HD movie editing with programs like Apple iMovie. No doubt this will change with updates, but right now apart from Sony’s PC-only Picture Motion Browser (they have now had half a decade to port it to Mac) there are few programs which can recognise the 1080/50 or 60p 28Mbps format and even fewer which edit it. You will need to buy software to do so. On my system, Toast Titanium 11 includes Roxio HD viewer and because it is a Blu-Ray compatible disc authoring package, this was able to handle the .MTS files in all formats, and convert them to formats editable using iMovie. Roxio offers similar PC utilities.

Sony PMB is also very useful for GPS data handling, map viewing and correcting GPS data. While Adobe Bridge with the GPS Panel (download from Adobe) installed allows viewing and editing of co-ordinates, it still has no link to Google Maps, Microsoft Virtual Earth, or any other useful location display.

Sound

There is no provision for audio notes or audio only recording, which is a bit of a waste of built-in functions as this would be possible and can be useful. Audio notations attached to images are popular with travellers and journalists.

The stereo sound is not much different to the NEX or Alpha 55 despite being capable of 48kHz (better than CD) sampling. The microphone under its unusual top grille seems less prone to wind noise than most DSLRs; the wind noise reduction feature, a bass cut filter, is additionally effective. Body handling noise is present, so is lens focus noise.

The external mic socket provides 5v phantom power for popular condensor mics, and is stereo too. No provision for fixed gain is made – auto level or gain is always on. The camera needs an option to disable auto gain so that a preamp or mic with dB cut choices can be used to control a fixed sound level; better would be three levels, like Nikon; even better still a proper sound level monitor display and full control in fine steps like Canon. Without at least one of these options the Alpha 77 can not considered for semi-pro or professional live sound video work.

GPS Data

While I think that the GPS on the A77 has so far proved faster in locking and more accurate in positioning than the A55, it’s hard to quantify as I have not used both together for long enough in difficult locations. To improve your GPS, download this file:

http://control.d-imaging.sony.co.jp/GPS/assistme.dat

Create a folder on your SD card inside the PRIVATE/SONY directory and call it GPS. Copy this file into it, put the card in your camera, switch on. Go to GPS in the main menus and make sure it’s turned on, then look at the GPS ASSIST entry and you will find the assist data starts on the day you download and lasts a month. Visit the assist.dat download once a month or more often to keep your GPS working with the fastest and most accurate lockon and co-ordinates. Do not worry if you format or change cards, once in the camera the assist.dat file is copied to internal GPS memory. Your original card does not have to be present.

Sony state 15 seconds or more to acquire or change position, and variable accuracy due to GPS being a US military provision which can be subject to deliberate degrading. In this model, when no GPS signal can be detected on power up, the camera simply turns off GPS embedding (on the A55, it uses the last co-ordinate). But if you are out and about, the last position may be shown on some pictures. I don’t think I move that far in 15 seconds

.

An example of GPS map location from Media Pro and Google Maps – click on the image for a full size screen shot.

Adobe gripe – it’s long overdue for Bridge to have a GPS map function when Lightroom does. As it happens I use Media Pro for all my digital asset management. When this was Microsoft Expression Media 2 it has its own Virtual Earth window, but now it’s been taken over by Phase One, that has been replaced by auto-opening a web browser Google Earth window. I don’t really need to see maps at raw file stage, but it could help with filenames. I like my filenames to be a ‘catchline’ format – an alphanumeric string which contains a key word about the subject. That could be simple like venice2011-15.jpg or a bit more precise like guideccasangiorgiovenice2011-15.jpg.

Mouthful? Not ISO compliant? Not ancient PC friendly? Sure. But very useful indeed many years later when searching for stuff. And access to GPS map location helps me decide filenames, then later on input metadata for caption, keywords, description, and much more. With 15,000 finished images stored on my system everything which helps me identify them is valuable.

Image formats and styling

The Alpha 77 has a stack of great functions and features I will never use. That’s because they are not available if you shoot either RAW or RAW+JPEG. They include multi-shot modes (combining tonal range for HDR, or reducing noise for low light and high ISO) and in-camera post processing effects.

There are some of these JPEG-only modes I feel comfortable with. Panoramas, as an example, don’t provide a raw file and you can’t bracket exposures. You have to trust the camera despite the huge range of tones and light a wide panorama can cover. If you choose your start position well (including the brightest highlight area of importance) exposure is very reliable, and at low ISO with Fine quality, the JPEG is of a professional standard.

Standard JPEG (click images for 1000 pixel wide version)

Three-shot HDR using 3EV spread

Three-shot HDR also works well, especially at low ISO settings of 50 or 100 and in Extra Fine JPEG. The 24 megapixel file gives plenty of scope for reducing to a smaller final result. There is also a special HDR Painting mode, which processes the file with a masking effect to create what is currently a popular ‘look’. Unlike the standard range of HDR settings, this is far from being a straight image and the lack of a raw file or normal JPEG to back it up means it’s only for fun.

Over the top with HDR Painting style, High strength – it actually works best on dull, wet days with grungy subjects!

More ‘only for fun’ stuff includes soft focus, selective colour against mono (called ‘Partial Color’), toy camera, miniature effect, two monochrome looks including one which uses three exposures, ‘pop color’, posterization, retro photo, soft high key. All of these are irreversible real time post processing. You have no normal backup when shooting.

The post-processing method offered by Nikon and others, where you can apply similar effects to raw or JPEG files already stored on your memory card and create a new version, is preferable. For standard HDR shots on Sony’s current models, a normal JPEG is saved along with the three-shot HDR and that’s good. For any of the Picture Effect post-processes, even multishot, no standard result is saved – all you get is the processed file, after a wait of 10 seconds or considerably less.

Selective yellow on monochrome – but that’s the only shot I have. No raw, no standard JPEG…

You do get a pretty accurate preview of the result in the EVF. If the stop-down preview button is set to ‘Shot Preview’ mode instead of ‘Aperture Preview’, you also get a simulation of the effect of your shutter speed – so flowing water brief time exposures (up to 30 seconds) can be previewed to see exactly which shutter speed suits the water movement best. Along with exposure simulation, there should be no reason why your shot ever goes wrong.

The Auto ISO Multi-Shot mode, Multi-Frame Noise Reduction, captures six frames and creates one JPEG. The pixel alignment seems very accurate and shots at settings like ISO 3200 show an improvement in detail which would be hard to obtain even by good raw processing. It’s not so much the noise that is reduced, it’s the overall quality of the image which improves. Using the high 25,600 ISO setting which can only be accessed in this mode shows that it’s slightly inferior to a straight 16,000 ISO shot despite the six-frame synthesis.

For all these multi-shot modes, the 12fps function of the Alpha 77, SSS, and the quiet, mirrorless shutter action combine well. They are all usable without much effort or worry, hand-held. The one ‘tonal range’ adjustment which does operate in RAW+JPEG mode, though only the JPEG is changed, is the DRO or DRO+ setting which uses a single shot.

High speed shooting also benefits exposure, DRO and white balance bracketing. Early information and the use manual state that you can define the number of exposures for bracketing, and the range covered, with the Alpha 65. In fact it is limited to three shots. The Alpha 77 gives you a choice of 3 shots at +/-3EV, the same at 2EV, then 3 or 5 shots at 0.7, 0.5 or 0.3 EV intervals. It is missing the obvious 1 EV step choices and that will baffle many, especially HDR raw users who would like 5 shots at 1 EV intervals.

Flash

The Alpha 77 has a proper, threaded, high grade studio flash sync terminal as well as the usual Minolta i-type hot shoe. Like the Alpha 700 and 900 (and unlike the consumer level cameras, including the Alpha 580) it can have the HVL-F58AM or 43AM wireless control capable flash mounted on the camera to control group/channel wireless strobes with power ratio. It can also use HSS (burst flash with shutter speeds up to 1/8,000th and corresponding power attenuation). It can not officially use the HVL-F20AM as a wireless controller, but owners have found it works – with a slightly longer than normal delay in flash firing, according to Gary Friedman, who has compared it with the pop-up flash wireless control.

The flash sync Prontor-Compur coaxial connector (PC flash socket) is sealed behind a cover shared with the Remote Release socket. This cover was so tightly sealed it threateed to break a fingernail opening it the first time, a small screwdriver was needed.

The most important change for professional and enthusiast owners is the long-overdue addition of a menu item which prevents the EVF or LCD live view from showing actual exposure when Manual aperture and shutter are set.  This item is under Live View Display, and is called ‘Setting Effect’ – off or on. While this nomenclature is not exactly transparent, it describes the function well as all picture styles and creative effects normally shown in the finder are also bypassed. The important thing for studio flash users is that you can set 1/125 at f/16 with modelling lights, and see a normal finder view not a black hole. You still must remember to set white balance to Flash or Daylight, otherwise the camera will set it from the modelling light K.

It is best to use one of the three Memory registers (accessible through Menu screen after turning the Mode dial to MR, Memory Recall or Register) to store a manual exposure, fixed WB, low ISO, Setting Effect OFF preset for studio work. Then you can return to any other setting and get your accurate exposure and ‘look’ preview back again.

The internal pop-up flash (GN12) has the usual range of first, second curtain, fill-in, off, auto options; TTL Pre-Flash, ADI, and also manual power control down to 1/16th which can be useful for triggering slave flashes if you don’t have a cable or a wireless trigger (and Minolta shoe adaptor). Because the body is weatherproofed, the flash shoe cover is a softer plastic type which seals tightly. Don’t lose this shoe cover or swap it for one of your others.

And the rest

By the time I’ve written this single review article, it will be one-third the length of the complete camera guide books we used to do for Hove twenty years ago. The Alpha 77 has so much more to discuss.

You will be concerned about high ISO quality, diffraction, resolution, having good enough lenses. I would question whether the new 16-50mm, used wide open, is a ‘good enough’ lens – let alone the 18-55mm SAM also being offered as a kit lens. Just don’t worry. Whatever your existing lenses are capable of doing, the 24 megapixel sensor will give you more of it. Let’s say your favourite lens is really only good up to 12 megapixels. It will be just as good if you use the 12 megapixel Medium size JPEG option on the Alpha 77, and if you do that, the 1.4X Smart Teleconverter function will also deliver a 12 megapixel drawn from the centre of the field only – so most likely just as good.

Rather too distant heron, shot using the 2X Smart Converter for JPEGs (this is actually a clip from a raw file processed in aCR to match). ISO 3200, 70-300mm SSM G lens. Click image for 1000 pixel version

Click image for 1000 pixel 100% size clip from ACR processed version (my density choice)

Click image for Capture One Pro 100% clip from raw (ditto)

Click image for in-camera processed (JPEG Fine, Low level of NR) 100% clip (camera’s density)

I am now shooting with auto ISO set to go from 100 to 3200 instead of 1600, I have started using Medium and Small JPEGs with DRO+ to ensure exposure correction for events type shots, I’ve tried all the lenses I have and the only thought is that I need to stick around f/8 to f/11 for safety. Balancing extra depth of field with a hint of diffraction loss. I’m using the manual focus ‘peaking’ function to check the accuracy of my AF (this shows a coloured line on correctly focused details, when the AF/MF button is pressed in). I am not so worried about low light, high ISO as I first thought. It’s actually as good as the 16 megapixel sensor when needed, and when it’s not, the extra resolution repays careful low ISO technique.

The new tilt, hinge, flip, swivel and cartwheel rear screen is just great for the few times I need to use it. The EVF may consume more power (470 images versus 530 per battery official rating) than the big rear screen but I no longer need to switch between the two for menu and function operations. Because of the new design, all positions found on other cameras from hanging-under to almost flat on top (R-1 style) are possible except facing forwards and positioned to the side. There are firmware or orientation sensor errors, as the imager can appear upside down in more than twisted position. The hinge design makes a vertical grip possible and also allows a wider range of tripods or quickmount plates.

The A77 has all the focus and AE hold and lock, slow sync, focus point shift, exposure over-ride and other key functions I need. It claims to be weatherproof, and having nearly broken that thumnbnail off opening the flash sync cover  I do believe the seal is tight. The card slot door is not so reassuring and I see no trace of any proper sealing, not even a labyrinth design.

I am baffled by Sony’s indecision about ON/OFF switch design, the camera labelling is the reverse of the Alpha 55/33/35 or 580/560 etc, though the action is the same. The direction is the reverse of the NEX-5. But there is one consistency, to turn any camera on the movement is always from left to right – whether Alpha 100, 700, 900 and whether the switch is rotary or a slider. Maybe this is the rule they stick to.

You can not configure the directionality of the two control wheels, as you can with Nikon, and for some reason I have always tried to open or close the aperture by taking the wrong directione. That is because the wheel directions go against the old Minolta protocol that turning the aperture ring to the right opens up, turn to the left stops down.

Like the Alpha 700, the Alpha 77 has magnesium alloy body shell combined with other metal and plastic components. It has the proper strap-lug fixed into the mag alloy casting, like the 700 and 900. This lug and triangle-ring design, as opposed to the slot-type strap fixing of the lesser camera bodies, is always a clue that the structure is based on a good solid metal skeleton. The overall design and balance of the Alpha 77 are as good as any Alpha I’ve used. There are hints of the 700 and also some memories of the Dynax 7xi present in the sculpturing of the body. To those who say it looks a bit like a Canon, yes, it’s true that Canon design has caught up with 1990s Minolta style in the last couple of years…

Conclusion

From the initial press meeting with Sony, where cameras were prototypes and the images were not allowed to be shown, I decided that if I could work for a year with the Alpha 55 and have no problems then the Alpha 77 was a safe investment. The viewfinder is a pleasure to use, though EVFs differ from optical screens in one important respect, that the eye can not compensate for small errors in the dioptre setting. With an OVF like the Alpha 900, I can set the dioptre midway between what’s needed for my sight with and without glasses, and get along fine with either. That can not be done with the EVF and it demands a precise dioptre setting for each. I have found it more comfortable to use without specs, so they spend too much time perched on my head, hanging from my collar or stuffed into a pocket.

It will be another year before I know just how wise the decision to go with EVF SLT models has been. And maybe another ten thousand words.

– David KiIpatrick

Please read the comments for some notes on corrections, which I will continue to make.

 

 

 

 

 

Practical's NEX-5 verdict – 8/10

I was going to post this on our Forum for NEX originally. It’s not good form to launch into what may be seen as ‘rival’ publications or journalists, so it’s the kind of thing which is often kept to blog pages or forum discussion. But Practical Photography is one the best-selling, and most powerful, photo magazines in the world.
So, I copied my ramblings and moved them here, instead of putting them in a forum post where just a few hundred people would see them. Tens of thousands of visitors see Photoclubalpha’s main site articles, and I want this to be seen, because it matters.
Continue reading »