Sony Alpha 3000 review by David Kilpatrick

SONY DSC

 

The A3000 is an E-mount camera which looks like an SLR but takes all your E-mount lenses and has a pretty good 20 megapixel sensor. It even has a metal lens mount. So what has been saved? You can now (2018) find these five-year old bodies for as little as £100. The saving is mainly in the expensive EVF innards – it uses a tiny 0.2″ display and a high power eyepiece, more like a consumer compact with a token EVF.

There’s not much really, in a difference of just three tenths of an inch. There’s even less when the inch isn’t a proper inch, but the sort of inch used to express the size of sensors or display chips. Except, that is, when the difference is between 0.5 inch and 0.2 inch and you’re comparing the electronic viewfinder of cameras like the A6000, NEX-6 or Alpha 77 with the EVF found in the entry-level Alpha 3000 (above and below, from both sides).

SONY DSC

 

Here’s our 2013 review:

I’ve had the Alpha 3000 (ILCE-3000, Sony model reference number) now for a few weeks (writing in 2013), and used it as much as my eyesight and patience would permit, given a wide choice of other cameras to use instead during the same period. I can now say without fear of being shot down in flames that it has the most inadequate electronic viewfinder I can remember using, including finders on various bridge cameras of the distant past.

The viewfinder of the vintage Konica Minolta Dimage A2 used a 0.44 inch 922,000 pixel display chip with a generous eyepiece size and accommodation latitude. That is, anyone able to focus their eyes comfortably between 1m and 3m, with or without specs, would rarely need to touch the dioptre control. The Alpha 55 used an 0.46 inch and the Alpha 77 (and accessory EVFs) 0.5 inch.

SONY DSC

The A3000 eyepiece has a hard plastic surround and small, only slightly recessed ocular. The accessory shoe is over the eyepiece unit not over the camera body, and the eyepiece assembly sticks out well clear of the screen.

The Sony A3000’s EVF has 201,600 pixels, not even equal to one-quarter of the 2004 Dimage A2 bridge camera’s display. Because it is such a small chip – a mere 2.88 x 2.15mm which compares to a match-head or a grain of rice – the viewfinder eyepiece has to be a low powered microscope. Like any cheap microscope, it only looks sharp if your eye is precisely centered and the slightest nudge to the focus (dioptre) blurs the image. I found that the click-stops of the dioptre control on the A3000 were so crude it was possible to have a sharp image between them, yet uncomfortably unsharp when set to the clicked position either side. I can’t put a graphic of the actual size of the display chip here, because different screen resolutions would change its size.

To make it worse, the quality of the ocular lens is very poor, with distortion and smeary blurring together with considerable flare from the brightly illuminated display chip; it does not have the level of multicoating or internal light baffles to present a crisp clear view. Since the main selling point of the A3000 over any comparable camera is that it has a built-in EVF, the extremely ‘stretched’ design parameters of this EVF will cost it sales in actual stores where it can be tried out.

SONY DSC

The A3000 kit box. This unit is made for more than one country’s market.

SONY DSC

Inside there’s no software CD, and that super fat looking manual is actually a minimal introduction to the camera printed in 12 languages. It is the Rosetta Stone for a future alien civilisation discovering the remains of Earth!

SONY DSC

The bonus for buying a multi-zone package is that you get stubby cable UK and European mains leads. There is no battery charger, instead you get a 5v USB transformer (as with the RX100 and RX1 models) and a USB cable to charge the battery in-camera. The neckstrap is Sony’s standard chafing and scratching type.

Children, young women and most people under 40 in bright weather will find they can accommodate just enough to use the finder comfortably, though the vague smudge which represents the scene is only to be considered as a composition guide. If you are male, over 40, have typical Western rather than Japanese eyesight age-related changes and try the camera out in a dimly-lit environment you’ll hand it back to the salesman and buy something else which is easy to view through and shows a clear sharp image.

That said, the entire camera and its 18-55mm SEL black metal skinned E-mount lens costs a bit less than the accessory EVF for the RX1/100II. And you read that right, this is an Alpha (so are all NEX cameras, as anyone able to see the Greek letter on them will realise) but it’s not an Alpha A-mount. And though it looks like a DSLR or a DSLT, it is neither.

Thick skinned

The A3000 is nothing more than a rather appealing sensor upgrade to the NEX range, accidentally fitted into a NEX-3 body, dressed in a hollow plastic sumo suit. In Spain you can see parades with impressive giants, twice life size, concealing a very strong young man who can make them dance. That’s rather what the A3000 is like.

SONY DSC

On an iMac 27″ screen you will see the NEX-5n and A3000 precisely life size. The front face of the mounts has been aligned.

My photograph doesn’t just show the relative sizes of the 5-series NEX body and the A3000 together. I have positioned the front face of the lens mounts to coincide. This enables you to see how much space is wasted BEHIND the sensor in the A3000. There should be no cooling problems for extended video shooting with so much air circulation! The A3000 has an focal plane index mark to show where the sensor actually sits inside the body (hard to see – right hand end above the strap fitting) but it’s ahead of the middle of the 38mm thick body, as the mount to sensor distance is 18mm leaving 20mm behind it.

SONY DSC

The whole body, though it can claim to be small by SLR standards and therefore get a ‘smallest lightest’ accolade, is just a big plastic skin inside which the intestines of a much smaller NEX have been concealed. You get the same 3-inch rear screen, though without any kind of articulation or touch function and only 230,000 pixels like much earlier generation cameras.

SONY DSC

You get a genuine metal lens bayonet mount not a cheap plastic version like the A-mount Alpha 58, presumably because the entire NEX system has always been of much higher overall precision than the A-mount range (just as the 1990s Vectis APS cameras were built to finer tolerances).

SONY DSC

You also get a metal tripod bush, though this is in an odd position for panorama fans, located close to the focal plane but well centered on the lens axis; a really well-shaped right hand grip taking advantage of the larger body size.

SONY DSC

It uses NEX-3 style controls lacking any front or rear wheels and just using the back mounted dial-rocker and unmarked soft-function buttons.

SONY DSC

There is a super-simple interface on the left end of the camera with a single SD/MSPro card slot and a versatile USB connector which is remote release compatible.

SONY DSC

The big bonus is on the camera’s fake prism top (which does have a GN4 flash, unable to control wireless flash, but giving excellent exposure and coverage with the 18-55mm). Here you find the Sony Multi Function Accessory Shoe, reassuringly metal and hiding an array of contacts under its forward edge. The A3000 has no HDMI port, no microphone input despite pretty good built-in stereo mics, no remote release socket, no wifi, no GPS, no wireless flash, no studio flash sync socket. It can or will have all of these through the Multi Function shoe. I have not been able to check whether it can also support one of the superior EVFs which would fit (I do know that the Alpha 99, for example, does not support an RX1 EVF mounted in its similar shoe). Perhaps Sony’s expectation is to sell barrowloads of these extremely cheap (£299/$399) entry level interchangeable lens cameras and see the new owners buy two or three lenses, flash, microphones and more.

It’s about time they actually launched the GPS module which this shoe is contact-pinned to accept.

See current price of A3000 kit at B&H

High resolution

Against all the minimal feature set and basic menu-driven user interface must be set one of the best sensors around, the 20 megapixel APS-C seen earlier in the Alpha 58. It is not a stunning sensor, in that some noise can be seen even at minimum ISO, but that may be because it’s got a very weak AA filter (helps with contrast detect focusing) and decent colour discrimination. Applying just a little raw conversion NR keeps the images clean up to 1600 and allows usable (professional, on-line library etc) ISO 3200. It can go beyond this right up to 16,000 but if you need this sensitivity, you’ll find the EVF so noisy and dark it’s hard to see anything at all.

jasper-55mm-5p6-iso800-flash

At ISO 800 (click these sample images for the full size file) you can see the general focus accuracy and sharpness of the 18-55mm used wide open, f/5.6 at 55mm, and also the quality of the flash for shots like this.

iso12800-incamerajpg

This is an ISO 12,800 in-camera JPEG at default settings.

iso12800-adobecamraw

This is the same shot carefully processed using Adobe Camera Raw Photoshop CC.

iso100-noSharpnoNR-noadj

Here’s a shot at f/8 and 18mm, at ISO 100 (minimum) processed without any NR or sharpening from raw. The sky blue does show some noise even at this low setting. The sharpness of the focused zone (to the left side) is excellent.

iso3200-adobecameraraw

Inside the Castle Restaurant, Edinburgh, the light is natural window-light, looking good but fairly low. This is 1/30th at f/9 with ISO 3200, processed from raw with some sharpening and some NR. I’d say nice colour and tones, a little soft because of limited depth of field, but sharp where it can be expected to be.

iso3200-NRinPS-reduced

This one is also ISO 3200, but it’s been put through Photoshop CC Noise Reduction filter (NIK Dfine 2.0 looked superficially better but created artificial looking tone breaks) and then downsized to 3600 x 2400 pixels.

There is no phase detect focus on this sensor, and the only focus method is contrast detection, as on earlier NEX models. It carries this out quickly and extremely accurately. Anyone used to the vague calibration of traditional DSLRs will be amazed by the lens quality the A3000 can reveal just through its pinpoint focus ability. No doubt this is helped by the rigid mounting of the sensor, which has no SteadyShot stabilisation and no vibration to clean off dust. The only self-cleaning is an anti static cover glass. A rigidly mounted sensor requires none of the complex carriage supports and adjustments found in Alpha DSLRs and DSLTs right from the Konica Minolta Dynax 7D onwards. It is probably more accurately parallel to the lens mount than an Alpha 900 or 99, let alone any of the lesser models.

Since the camera has an electronic first curtain focal plane shutter speeded 30 seconds to 1/4,000th and full PASM controls (with a little difficulty) with fully auto mode, scene modes and respectable plus-minus override and bracketing/HDR functions there is nothing an Alpha 99 or 77, NEX-7 or any other high end model can do to exceed its abilities except in some cases achieve a 1/8,000th top speed and shoot burst sequences faster and longer.

iso100cropnoadjustments

Contrast and dynamic range from raw as exposed without any adjustment in raw processing.

iso100cropadjustedfromraw

With adjustments for black, highlights, shadows, exposure the sensor shows that it has recorded plenty of detail in all zones.

Used for single exposures, it’s just as much a professional tool as a Nikon D4 even though it might not last a week in the hands of a pressman. For £299 perhaps that pressman might consider buying a couple of these just to get into the next urban war zone street demonstration, or to cover a Spanish tomato fight. The pictures will probably be just as good and if the camera gets kicked into touch, the light plastic half empty body skin could well survive better than a crackable alloy jam-packed top model NEX.

Without accurate focusing and exposure, the 20 megapixel sensor would be of little value. Since both focus and exposure are read directly from the sensor, they are about as accurate as you can get. The raw files also show a very good dynamic range and as expected it’s just a little better in ISO performance and DR than the Alpha 58, because there is no SLT mirror in the way.

User set-up

Again, despite being an entry-level camera probably designed for a huge Chinese and Indian potential market but sold worldwide to ensure it’s taken seriously, the A3000 has vital functions which Sony could have omitted in a purely consumer model.

It has a setting for shutter release without lens, which makes it suitable for use with the vast range adaptors and third party lenses for the E-mount (almost every lens ever made for any format larger than half-frame, whether rangefinder or SLR). Will A3000 buyers want to spend as much again on Novoflex, Kipon or Metabones adaptors and legacy lenses? Maybe not, but they can, and they will work well on this body.

It has a ‘Setting Effect Off’ option – that is for the LCD screen and the EVF, disabling the accurate simulation of exposure/contrast/colour, and permitting use with modelling lights and studio flash. It’s got AF Calibration, usable with the LA-EA2 phase detect Alpha lens adaptor, and the contrast-detect AF is compatible with many SSM and SAM focus motor lenses used on the LA-EA1.

It has focus peaking for manual focus, with magnification, but the low resolution of both the EVF and the rear screen render this less functional than it is in some other models.

A criticism has been made of a very faint click generated, apparently through the audio speaker, when the shutter is pressed. I thought this was a mechanical or electrical relay click connected to the operation of the E-mount aperture, but someone has determined that if the circuit to the speaker is cut (beep off does not work) the click disappears.

Actually, the click indicates the moment of capture for brief exposures and the start of exposure for longer ones (like 1/15th). The first shutter curtain on this camera makes no noise, so you would press the shutter and hear nothing at all. Even ‘silent’ cameras like the RX1 and RX100 do make some noise from leaf shutters. This click is similar in volume or less.

To me this indicates proper concern for the user in a camera where there may be no image displayed on the rear screen and the eye may be away from the viewfinder. You can tell when the exposure is made because the finder blacks out, but if you are not studying the finder, you would have no idea. The shutter button does not have a very obvious point of resistance after first pressure for focusing and you do not have to jab it down. Very gentle pressure will take the shot.

Electronic first curtain shutters are slightly confusing because all the mechanical shutter sound you hear happens AFTER the shot is taken. It is valuable to have this tiny audible clue, which no subject is likely to hear, that you have timed the shot as intended.

In use

The practical side of the A3000 includes a weight so minimal (281g body only) you can take it on a Thomson package deal flight and still carry your wallet and toothbrush as well. The bulk means you are unlikely to mistake it for your iPhone, and the shape means that some people will take your seriously as a photographer while others who would have ignored a NEX will shy away or physically assault you. However, if you hold it out and use the rear screen to compose, no-one will do either as they will assume you are a beginner and ignore you.

To do this, you must press a button on the top. The camera has no eye sensors (it does not even have a rubber eyepiece surround and its 21mm eyepoint just helps to avoid the regularly clattering on spectacle lenses against hard plastic). This means that you can lift the camera to do a rear screen frame-up and the screen is, of course, dead. You get used to it.

SONY DSC

The mode dial appears to be metallic and has raised markings. Note the Finder/LCD manual switching button and the safe position of the Movie button away from accidental pressure (it can also be disabled completely).

The camera lacks any kind of finger or thumb wheel so the adjustments are all made after the fashion of the most basic NEX (3 or 5 series models). This is only a bit of a nuisance when setting shutter speed and aperture manually. It does have a lockout for the movie button, a lesson learned from the notoriously free triggering of video shooting by the badly placed red button on countless previous Sony models. The button is actually placed where you wouldn’t hit it by mistake anyway – belt and braces.

SONY DSC

The 3 inch rear screen seems to have a very good quality finish – a better acrylic, or might it even be glass? Mine seems to be remaining unscratched to the same degree as Gorilla Glass protectors do.

The EVF is only just acceptable in bright sunshine, when it is also most useful as the rear screen may become unusable. It does not really show the tones of the scene (take a shot and play it back and the difference is obvious) and it shows very little detail. You can make out all the larger shapes in a composition. In some ways it probably encourages good composition. You can’t really tell if the focus is sharp but green confirmation rectangles or a wide zone will activate, with beep if requested, and the shutter release won’t operate until focus is OK. It has optional grid line display and 25 focus points so the little display can get pretty busy.

I have no interest in medium rate burst sequences personally as there’s hardly any action or subject where I do not prefer to time individual shots. A modest 2.5fps is no different to 3.5fps or even 5fps or 1.5fps for me. Really fast stuff like 8 or 10fps or Nikon’s incredible 60fps on the 1 V2 and AW1 has some appeal as this does give you a chance of optimum timing for sports and general action. The A3000 doesn’t. OK, photograph your toddler stumbling towards the camera, just don’t try to advertise the kid on Facebook. Try eBay instead, it’s a far surer way to get rid of them before they become too much trouble.

The worst experience I’ve had with the A3000 has been EVF use in extremely dim indoor conditions, with or without flash, regardless of ISO set and lens used. The rear screen performs much better so it is not just a matter of the sensor’s live view feed. However, in typical well-lit interiors its only failing is that Auto White Balance doesn’t seem to work even if Setting Effect is enabled – it will look brighter than an optical finder, and reasonably clean and clear, but often show a strong colour cast which is not present in the final shot.

I’ve shot a few video clips with acoustic performers and found the sound to be good but very prone to auto gain ducking and boosting. To make decent videos with sound, you have to buy the shoe fitting accessory microphone or audio preamp unit. This is no great surprise as to date only the Alpha 99 has the right functions to control levels and use a conventional plug-in condensor mic directly.

And back to those small differences

I started out by observing the miniscule size of the EVF display chip. I’m going to end with something unexpected. Snapsort.com’s camera comparer states that the A3000 has a larger than normal APS-C sensor, 25.1 x 16.7mm instead of the normal 23.5 x 15.6mm. If this was the case, the camera would gain a huge bonus point, as 1.6mm in 23.5mm would ‘turn’ your Sigma 8-16mm zoom into 7.5mm-15mm.

But the handbook clearly states the A3000 actually has a smaller than normal sensor, 23.2 x 15.4mm. The Sony website says that it has a 23.5 x 15.6mm sensor. Amazon incorrectly lists the size of the original APS-C film format.

The handbook also claims that the EVF is 0.7X when Snapsort comparison specifications gives 0.49X – without knowing where this figure comes from, I can only confirm that the EVF is visually a fraction smaller than a typical 0.72X APS-C like the Alpha 580 (this is easily established by holding two cameras, one to the left and one to the right eye, and seeing how the finder windows compare). So don’t believe everything you read about the A3000. The 0.70X is true. The specs also show an extreme dioptre range (-4.0 to +3.5) for the eyepiece, which is necessary given the critical viewing conditions produced by such a high powered ocular and small display chip.

Actually the Snapsort comparator is very badly written, as it also claims a normal Sony Alpha body is 3.5 inches deep (it’s actually 2.55, 65mm mount to back, compared to the A3000’s 38mm) and that the A3000 is 4.7X smaller than an Alpha 57. This is based on measuring the A57 including prism and grip, and the A3000 on mount to back body thickness only. The A3000 is volumetrically 1.35X smaller including all external air space – the ‘box’ it can fit in – and in linear terms it’s only about 4mm less tall and 102mm long as opposed to 132mm. It’s small but there is a fair amount of bad measurement and worse measurement floating around the net.

SONY DSC

Don’t tell me stabilisation would not be a bonus even for the 16mm. If not, why did they make the 10-18m an OSS lens? The 16mm chrome lens looks rather odd on this body.

Snapsort also lists the lack of in-body stabilisation as an advantage compared to the Alpha 57 because apparently in-lens stabilisation gives ‘less risk of blur’. In my experience the two methods are equally effective and our many Alpha bodies offer the choice between using IBIS and lens IS. The A3000 with IBIS (SS) would have been a great companion for the 16mm, new 20mm f/2.8, Zeiss 24mm f/1.8, SEL 30mm Macro, SEL 35mm f/1.8 and the Zeiss TOUIT 12mm f/2.8 and 32mm f/1.8 – not to mention the Sigma 19mm f/2.8, 30mm f/2.8 and 60mm f/2.8. All these excellent lenses currently must survive with no stabilisation other than pixel-shift electronic processing for video work on some cameras.

The A3000 is very small, but the saving is mostly on width left to right, and on the thickness of the body disregarding the ‘prism’ overhang and the right hand grip. The grip extends nearly as far as any other Alpha, meaning that you actually get a much deeper inside surface so your fingers wrap right round. It gives the A3000 the most secure right hand grip of any E-mount camera I know, almost 30mm of sculptured rubber-skinned moulding. Like the rear of the body, this appears to be completely empty. It’s just a moulded grip with a few connections in the top for the shutter button and on-off switch. It does not even house the battery (NEX type) which sits well behind it.

The lens

The cheapest kit for the camera includes a black 18-55mm f/3.5-5.6 SEL OSS. Well, I might as well admit I sold the black 18-55mm which came with my original NEX-7 for £200. Previous 18-55mms were chrome, I bought a Tamron VC DiIII 18-200mm, and the black lenses were in high demand. Now, I get one again, but in with an A300 body and the brand new price was only £349 – one month later, cut to £299. So does that mean I really only paid £99 for this body?

I was not over-impressed by the performance of the 18-55mm on NEX-7. Now I find this latest 18-55mm seems much better. It is made in Thailand, not Japan or China, just like the camera body. Sony must have opened a new plant or recovered the factory which was swamped by two metres of floodwater a couple of years ago. Whatever the case, the Thai contractors (whose story started with the Nikon Pronea APS SLR) have a highly skilled workforce now with almost two decades of experience.

SONY DSC

The A3000 looks great with the 18-200mm, whether Sony or Tamron branded.

This lens is so good it compares with the Fujinon 16-50mm I was using recently, and Fuji’s lenses are generally a level above Sony in quality as well as cost. I have found the A3000 body to be a great companion for my 18-200mm as well. It just looks much better on this body, handles better with the right-hand grip, and focuses better than on my NEX-5n. The EVF with the VC stabilisation is better to use than any rear LCD screen when a lens can be extended to 200mm on this format.

The final dilemma

As you will gather, I have big problems with the very poor EVF of this camera. I don’t really have any issue with the relatively low resolution rear LCD. The only other thing which causes me any problems is that I’ve been using Olympus OM-D E-M5 for a while alongside my Sony kit, and I have come to value its in-body stabilisation. I felt able to buy a Sigma 60mm f/2.8 for the Olympus – this is a truly wonderful lens, equivalent to a 120mm on the MicroFourThirds format. I don’t feel able to buy one for the NEX as I know the combination of a 90mm equivalent lens and no stabilisation at all will result in poor sharpness from a super-sharp optic, in many of the conditions I like to use such a lens.

SONY DSC

Had Sony decided to put SteadyShot into this body, I think it would have made a great difference. The NEX mount market is just waiting for a stabilised-sensor body able to guarantee the best results from the hundreds of adapted lenses around (Olympus, of course, has a menu to let you enter the focal length of any adapted lens and thus ensure correct IS). But the price point would then have been missed and the precision of the assembly might have been compromised without even greater expense in manufacturing.

I have been using the OM-D more often; its 12-50mm standard zoom is a very good lens, I have a 45mm f/1.8 portrait lens and now the Sigma 60mm which is semi-macro with a great working distance for flowers and fungi. The 5-axis stabilisation works well. I have a drawer full of legacy lenses, adaptors and accessories for NEX but all of them are let down by the lack in sensor stabilisation. The only thing stopping me from ditching NEX and shifting to MicroFourThirds is the lack of a decent wide-angle within that system. I have access to 12mm (16mm+ converter) or 8mm (Sigma zoom with LA-EA1) but for the Olympus I really would need a 6mm lens and no such thing is made.

So, do I sell the A3000? I like to buy rather than beg and borrow cameras for test purposes. Borrowed cameras are OK when it’s not possible – there’s a Canon EOS 70D kit about to land for a couple of weeks – but bought cameras don’t half focus the keyboard fingers. It is easy to be too kind to a camera lent to you for a couple of weeks. It is not so easy to be kind to one you have paid for, unless you are dishonest and think that writing it up favourably will make a camera you don’t like easier to sell on!

Take the Nikon D600. We couldn’t lie about the showers of stuff deposited on the sensor by the shutter. We had bought a full kit. My reviews didn’t hestitate to mention the shutter issue. Nikon replaced the shutter in the camera under warranty and we immediately sold it, the buyer getting a considerable bargain (effectively, a 28-300mm Nikon lens, a GPS unit and a Sigma 17-35mm of proven performance thrown in free with a body that included a transferrable warranty). The buyer also knew who was selling it and could read the reviews. Now we see the Nikon D610 launched with an entirely new shutter mechanism, though Nikon has never once admitted the problem with the original D600. Reviewers and critics and technicians, 1, Nikon 0. Reviewer’s bank balance, -1.

My inclination is to keep this camera despite no GPS and a poor EVF. It’s so cheap that it is really only a swap for the NEX-3 kit I sold this year. I’ve written one paid review which writes off part of the cost of the camera (we make nothing from this website now unless visitors decide to subscribe to Cameracraft magazine which is not all that directly related). I can use it alongside my NEX-5n which is so much better with the 16mm f/2.8 – that lens just looks silly on the A3000. I can maybe even fit my optical finder to the 5n for the 16mm now. I have recently bought some extension tubes.

SONY DSC

The A3000 has all the contacts – but are they all wired?

If only the A3000 had a tilting rear screen…or the NEX-6 had the 20 megapixel sensor… or the NEX-7 had the new hot shoe… if any one of the them had on-board GPS like my A55, A77 and A99… if the GPS module for the new hot shoe existed…

What a mess! Sony does not offer choice. It offers buyers’ dilemmas and buyers’ remorse, as in ‘did I buy the right model?’ or ‘did I pick the wrong system?’. Sony is doing just the same with the Alpha A-mount system. You have to pick a sensor you trust over a viewfinder which is great or a format and lens kit change or controllable audio input or having GPS or missing your built-in flash. No way can you have it all in one body.

(below – my conclusion written in October – we now know of course what was launched, and also that there will be an A5000)

Sony must surely follow this up with an A5000, or whatever, adding a few missing refinements to the camera and making it a £499 kit. That is what I would really like. But for the moment, the results from this cheap entry-level ILC are so good I have not touched the NEX-5n or the Alpha 77 since it arrived. And that is maybe the last word.

Except for the full-frame NEX or the interchangeable lens RX1 or the NEX fitted with Olympus-derived 5-axis IBIS – or whatever mid-October brings.

(added below – a comment at the end of 2013)

The A3000 is now sold for as little as £220 including in the UK (£185 before tax) and for $300 US. It is also sold with incentive deals for the 55-210mm E OSS lens, an excellent telephoto option, in addition to the 18-55mm. Am I upset that my camera’s value has been reduced? Well, I often sell cameras I buy to review, eventually. This one I decided to keep. It’s got the best imaging quality of ALL my APS-C cameras and so far, the 20 megapixel sensor responsible for this has not appeared in anything else except the plastic-bayonet A58. It’s a remarkable bargain now and it’s almost being given away.

(added below – a comment in September 2018)

I’m struck by how Canon’s way of making the new EOS R full frame mirrorless system look rather DSLR-like resembles what Sony did in the A3000!

– David Kilpatrick

Alpha 3000 has NEX mount, 20 megapixel, APS-C

The long-rumoured Alpha 3000 was announced earlier in August but placed under a n embargo until August 27th. At the same time, the Press was given an insight into new smartphone related products (also widely rumoured) but again, not allowed to print anything officially.

The A3000 is a DSLR-like body with an electronic 1.44MP viewfinder in a prism-style top bulge, but the body is much slimmer at the lens mount and built to the smallest Alpha form factor as the 3 series indicates (smaller than the A57). Indeed, it’s not so different from the relationship of the very first Alpha 3000 series cameras back at the end of the 1980s. The mount is a regular NEX E-mount and the camera lacks any form of Phase Detection AF, depending on Contrast Detection matched to both existing (18-55mm SEL, etc) and new E-mount lenses. The rear screen is a 230KP fixed type.

18-105-16-70

Along with this first Alpha E-mount body, Sony announced three new E-mount lenses – a 50mm f/1.8 E OSS (£249) in black, CZ Vario-Tessar T* SEL 16-70mm f/4 ZA OSS (£800) and a Sony SEL Power Zoom 18-105mm f/4 G OSS (£500, and also destined to be matched to the next generation of NEX camcorders, with its friendly left hand operated PZ switch and quiet, controllable action). There may also be another power zoom, probably 16-50mm f/2.8 or a similar short wide aperture range, maybe even the 10-18mm in a power zoom housing. The reason these new lenses are made with constant apertures has nothing to do with the ‘Canon f/4 L’ obsession; it’s entirely to do with video work, to enable zooming without brightness change. The power zoom function is also there for video.

Caveat: the 18-105mm has a close focus of 45cm at 18mm, 95cm at 105mm. This indicates that the lens is not a true zoom but a varifocal. Varifocals are not of much use for zooming during a take in video, which goes against the constant aperture and power zoom features. So either the lens has an automatic compensation system which can refocus intelligently during power zoom, or a physical limiter on focus travel (unlikely – what would happen if you focused on 45cm at 18mm, then zoomed to 105mm?). The 16-70mm focuses to 35cm over its zoom range, and is actually capable of close-ups with better than double the image scale (less than a quarter of the frame enlarged) relative to the best the 18-105mm can offer, at 0.23X.

The relatively high level specification of the 16-70mm ZA does not necessarily indicate that there is a higher level of Alpha E-mount body on the way quite yet; at 20.1 megapixels (the same size sensor as the Alpha 58, with some improvements) the performance in terms of imaging may be optimal for a while. photokina 2014 should be when any professional body appears. But this is no way professional – it’s a mere £370 kit with 18-55mm f/3.5-5.6 E OSS, ISO range 100-16000, full HD video, A58-like viewfinder and general performance. You’ll see it in the shops before the end of September.

Sony’s agenda

Much has been made of Sony’s relationship with Olympus and the possible inclusion of OM-style 5-axis sensor stabilisation in E-mount bodies. Though the A3000 seems to have SteadyShot Inside (not confirmed by our man at the press conference, and not one of the features shown on the swingtags of the first cameras photographed by others) Carl Zeiss, traditionally wary of stabilised lens design, would not be issuing the 16-70mm with OSS unless fixed sensors were going to around in NEX and Alpha E-mount bodies for some time.

Whatever type of in-body stabilisation it has, the A3000 with SS looks like a good companion for existing un-stabilised lenses such as the Sigma 60mm, 30mm and 19mm f/2.8 designs or specialities like the Voigtlander Nokton 42.5mm f/0.95. However, I’m writing this prior to the big release of information this morning. Despite many statements that the camera does have IBIS, I see no rock-solid evidence that it does and I’m very aware that Sony staff if asked whether it has stabilisation could well say ‘yes’ on the basis of the OSS present in the kit 18-55mm lens. So, I treat this information with caution. It would not be the first time an expected feature has not materialised. Check the Sony site if you are reading soon after 5am GMT, I’ll amend this article later in the day.

Update 9am: full details are now widely on the web and there is no IBIS – here’s a complete rundown and sales page from B&H in New York on all the new products, including tech specs.

In the meantime, we know that Sony has been increasingly close to Sigma (a company which also works with Zeiss) and that some ideas may be shared between the two companies. One of the most important ideas promises to end the way your camera system choice locks you in to one company’s products. Sigma has taken the first visible step with its mount switching service. Future Sigma DSLR lenses can be returned to the workshop and their entire rear mount changed, at a cost, to another mount. So you will be able to own your 300-800mm (2014 version…) and if you switch from Canon to Nikon, the lens can switch with you. Now that many regular lenses cost £1000 or more and Sigma’s quality is so highly regarded (35mm f/1.4, MFT and E-mount lenses, DP series) it will make sense to keep the glass for longer. The new USB-interfaced lens calibration kit will also enable such lenses to be user tuned to work with their new host bodies.

The second idea is the switch to E-mount for more products by Sony. There is already a full frame E-mount Sony, the NEX VG-900E, and it’s actually a 24 megapixel still camera shooting raw, as well as a high-end full frame camcorder. It just gets very little attention because it does not look like an SLR or a NEX. This camera has adaptors for other systems of full-frame DSLR lens, as well as a specialised full-frame version of the Alpha mount plain adaptor (LA-EA3 without APS-C internal baffles found in the LA-EA1). However, third party makers have not yet gone the distance. Prime lenses from Samyang and Carl Zeiss are the main E-mount full frame offerings, made for video.

With the Alpha 3000 we see the introduction of an idea I sketched out for film cameras in the 1970s based on discovering the Contarex with its interchangeable 35mm backs. My concept was a camera body with a shutter unit, and a mechanical linkage for slot-in modules including a rangefinder mount, an SLR mirror-box with prism, and a pro mirror-box with interchangeable finders, plus several further front components to switch between Pentax, Minolta, Nikon, Canon and other lenses. Alpa came close to managing this with their very slim bodies and mount adaptors, plus a combination of optical direct finder and prism.

Sony’s future, like Sigma’s, lies in crossing all boundaries. The eventual full-frame, E-mount DSLR-style camera may well have the rumoured 36-50 megapixel sensor, 4K electronic viewfinder, and five-axis sensor stabilisation. It will also have an Alpha lens adaptor and firmware lens recognition good enough to let SSM and SAM in-lens focus motor lenses function adequately with on-sensor focusing. But what it will also have, for certain, is a range of adaptors for other mounts including Canon EF and Nikon G with translated control of AF and aperture (exactly what Sigma has now built in to the front ends of its ‘switchable mount’ new lens series). These will likely be third party products, but Sony has already shown (in 2010, at photokina and other shows) that it has no difficulty welcoming makers such as Metabones and Novoflex on board as co-operative vendors.

What’s more, in theory there will room to build a phase-detect mirror system (SLT) into some adaptors and even to add a focus drive motor. With the right chipset to translate the protocols from body to lenses, or to mechanical functions in the adaptor, almost any lens ever made for any SLR or rangefinder from the last century of miniature camera development will find a home on Alpha E-mount bodies.

Then you will have the ‘DSLR-CSC’ hybrid to end all – the body which can be sold with a Nikon mount, or a Canon mount, or an A-mount – or use its highly optimised future full-frame E-mount optics. To some degree the NEX has already done this but the real impact of the 18mm thick body, compatible with full frame lenses, has yet to be seen.

Caveat – if a full frame model does use sensor stabilisation, mechanical obstructions could mean that a crop factor of somewhere around 1.2X was needed. Sony already has pixel-shifting electronic stabilisation for video, not stills, and this also needs a crop factor to work. It would be easy to imagine the full-frame NEX accepting this limitation, and providing electronic stabilisation on-sensor only, removing moving parts and improving precision/calibration.

The NEX-5T

Sony-NEX5T-flipup

The NEX-5T has the same forward flippable rear screen mechanism as the 5R, one of the advanced over the earlier 5 and 5N designs.

The NEX-5T is the successor to the NEX-5R (5n, 5 etc), available as a black or white body. The 16.1 MP APS-C CMOS sensor NEX-5T will sell for around £600 and adds Near Field Connectivity technology to WiFi. Fifteen of Sony’s PlayMemories ‘apps’ are now available. Features include Hybrid AF (CD-PD on sensor), 180° tilting LCD, and maximum sensitivity of ISO 25600.

See: www.sony.co.uk

20/20 vision – Sony Alpha 58 review

In the last year two cameras have been through my hands and impressed more than any others with the quality of their sensors. Those cameras were as different as they could be – the full frame Canon EOS 6D, and the pocketable Sony Cyber-shot DSC RX100. They have one thing in common, 20 megapixel sensors.

Of course there is no connection; a 24 x 36mm Canon sensor and a 8.8 x 13mm Sony sensor are very different. But if you shoot at ISO 125 on both cameras, and process from raw with a normally exposed scene, you will be hard pressed to tell the results apart.

SONY DSC

So, when Sony – proving a giant-killer with the 1.0” format RX100 sensor – creates a budget DSLT model with an APS-C 20 megapixel sensor it would be reasonable to expect that this would outperform the RX100 and in the process prove superior to the 24 megapixel Alpha 77, 65 and NEX-7. It might even match the Alpha 99.

The Alpha 58 was announced at the end of February 2013, and some major websites had still not reviewed it by June. This is the first new Sony APS-C silicon for two years. It’s not found in any other body. Why the lack of urgent interest?

Perhaps, like me, the entry-level grade of the A58 has been responsible. It’s by far the worst Alpha body ever manufactured, and the first to have a plastic lens mount where machined metal is normally used. The whole physical feel of this Thai-made camera is inferior; it even has a slightly rough external texture which picks up handling marks the moment a store customer (or cynical on-line orderer intending to try, but return for a refund) so much as touches it.

SONY DSC
It has a relatively low-resolution, small rear screen (2.7 inches and 460,800 pixels) which is in the simplest and most restricted kind of up/down angle hinged mount. Against this economy, though, you need to balance a better OLED electronic viewfinder based on a one-inch 1,440,000 pixel display and a change to the new Sony Multi Function Accessory Shoe (without a protective cap, and without the adaptor for the Minolta/Sony Auto Lock shoe). It also uses the larger FM-500H battery common to all other current Alpha models, not the smaller FM-50H used by the NEX and also by some previous Alphas like the A55.

What is really new about the A58 is the price. I was not interested in the camera, though curious about the new sensor, because it was $600 US or £499 UK with the most basic lens , a new 18-5mm f/3.5-5.6 SAM II with quieter and improved internal focus motor (delivered, like Canon kit 18-55mms, without a lens hood). Then while helping a professional friend decide how to replace an A350 used for some unique underwater photography where the Quick Live View AF function has no equivalent in other makes, I looked into the A58.

SONY DSC
It was on sale, in Britain, including VAT and properly sourced from Sony, for under £350. The actual price of the kit was only £291 before added VAT sales tax. This was £100 cheaper than the lowest price of the RX100, less than any other DSLR on the market with anything like the same specification. Bear in mind what a replacement Sony battery costs (around £50) and what an 18-55mm fetches (officially more, but in practice around £100 new) and this body was coming in at about £150. That’s a point and shoot compact price.
So I bought one.

First impressions

SONY DSC

The packaging for the A58 cuts down on many things – recent Alphas have been festooned with stickers, this one has a single swingtag and a sticker on the rear LCD promoting connection to Sony’s webserver to obtain PlayMemories Home, the kiddy-friendly name for what is probably quite functional software, if you happen to use a Windows PC.

SONY DSC

When you have charged the battery and loaded it, the first time you turn on a similar message fills the rear screen. Everything works as you expect from an Alpha, though some mysterious glitch stepped the entered date back by two days. You can only set to complete minutes, not seconds. Some defaults are set to ‘on’ including Smile Shutter and Auto Object Framing, and for my use these were disabled and the recording mode set to shoot RAW+JPEG, sRGB.

SONY DSC

The supplied lens is a cheap product glitzed up by the addition of a metal microskin on the front bezel, behind the rotating rubber rimmed zoom and focus tube, 55mm filter thread. The SAM focus is quieter than the original version. The plastic-on-plastic mounting action is smooth enough, but when changing between the 30mm SAM macro (very noisy and jerky motor in comparison) engagement of the contact array was not always positive and the lens had to be twisted back and forth once with the lock pressed to enable AF.

SONY DSC

The A58 is set to use electronic first curtain and SteadyShot Inside sensor-based stabilisation, both switched via the main menus. The Function button, which can access most regularly used settings does not reach these directly (a second menu screen is involved, very easy to use). There are also direct access button-positions round the rear controller for the important Drive, Picture Effect and White Balance settings, and a dedicated ISO button close to the shutter release. These can be customised to a degree, like the stop-down/intelligent preview button on the camera front which can be changed to work as a focus magnifier.

SONY DSC

What’s initially surprising is that the shutter sound is noisier than many cameras with flipping mirrors. It’s not a pleasant sound either, mechanical in a clockwork-motor way. It all happens after the shot has been captured, as you can tell if you make a long exposure. Maybe the lightweight mostly plastic construction of the body, with its minimal metal skeleton, fails to damp the sound.

The viewfinder has the same contrast and dark detail failings as the A77, and in some ways the old A55 finder provides a more useful view. The rear screen is not very bright, and there is no auto brightness setting, just a 5-step manual control. In return, whether you use the LCD or the EVF makes on a tiny 10 shot difference to the 700 frames expected from one battery using the former. This stamina is double that of an EVF camera using the smaller battery type and restores a more than acceptable battery life per charge to Sony’s consumer entry level.

SONY DSC

What is excellent about the finder is the ocular. It has been designed to give extreme eye relief – 26.5mm from the eyepiece glass, 23mm from the rubber frame surround. This compares to 19mm/18mm for the same data on the A55 (eyepiece glass not well protected from dust and light ingress, but eye needs to be close) and 27mm/22mm for the A77 (very deeply recessed and shaded ocular, reasonable eye distance). Part of this is down to display module sizes: 1.0 inch for the A58, 1.2 inch for the A55, 1.3 inch for the A77. Matters are further confused by the A55 failing to use all its EVF for the image, so the eye also sees a large near-black surround except when using menus which then expand to fill it.

Overall, the EVF looks like a view which is A55 size but A77 quality, like using a cropped section of the A77/99 2.4 megapixel EVF module. Sony has made this much easier to use with spectacles, or with the camera held an inch away from your eye. So although it’s not the best finder ever, it may be one of the best choices for anyone who has trouble with eyepoint. I found the EVF very blue at its neutral point, and set two notches of warming up to match the eye’s view.

SONY DSC

The controls are no different from any other Alpha, they don’t feel rough or weak, and every button push got a response as expected.

SONY DSC

The cover for the single dual purpose SD/MSDuoPro card slot is not a tight seal, and does not need firm action to open. The synthetic rubber single seal door over the microphone jack (no manual level control), Micro USB matching the RX100, and Micro HDMI ports is a good flush fit. There is also a Minolta/Sony unique DC in socket with similar cover.

SONY DSC

What’s missing is the old Minolta and later on Sony remote control socket. Instead there’s a pretty clunky wired remote which works via the micro USB port. It looks like a version of a Chinese generic. This connection offers the only way to get wireless remote control, with a suitable device, as the camera lacks the IR receiver and has no Drive Mode for it.

SONY DSC

The body shape in the hand is just a little more cramped than the A55, far more so than the A580, both cameras we have and both ‘replaced’ in the Alpha line up by this one model. I’d say it was less of a good fit to my hand than the classic Minolta Dimage series bridge cameras, or the Nikon 1 V2. Both of these were around to compare directly.

The critical bit

Then after getting acquainted with the camera, comes the question of the sensor performance. Here, the viewfinder gave the first clue that unlike the ‘sweet sixteen’ CMOS this 20MP newcomer was not going to move any goalposts. In domestic lighting, the level of noise in the EVF is higher than the old A55 and comparable to the A77.

However, I chose to compare the A58 with the RX100, because of the great advances made in the RX100’s very small 2.7X sensor. The results show an interesting divergence from minimum (100 for A58, 125 native for RX100) ISO to maximum. There is almost no advantage to the A58 up to ISO 400. Both cameras, with similarly adjusted raw conversion, yield clean images and it’s not even easy to tell ISO 400 from 200 or 100. If you click the images below, you’ll access a full size original conversion from raw (ACR).

A58, ISO 100, full sun, shadow to highlight from raw

RX, ISO 100, deep shadow to full sun on white, from raw

A58, ISO 400, full sun on wide tone range, from raw

RX100, ISO 400, wide tone range in full sun, from raw

As you increase the speed, the 58 rapidly shows its advantage and by ISO 1600 has both a structure which looks finer in terms of granularity, and with far less chroma noise. Where a carefully processed ISO 800 from the RX100 might match a carelessly handled 800 from the Alpha, at 1600 it’s very difficult indeed to close the gap. By 6400 the RX100 is not really useful but the 58 can still deliver a fairly normal looking shot – it does begin to look like a desperate measure. Then you have 12,800 and the absolutely pointless 160,000 top setting which seems to be there for advertising purposes.

Taking into account differences in colour rendering, the advantage of the larger sensor is levelled if the RX100 file is reduced to 4500 x 3000 pixels and moderate chroma noise reduction applied. In relative terms, the small sensor is better, because it’s actually only a little over one quarter of the size of APS-C.

Compared to the 16 megapixel Sony sensor (NEX-5n, A55 and many later models as well as Pentax and Nikon variants) the 20 also fares pretty well. It has higher levels of luminance noise but minimal chroma noise. It’s not easy to reduce the luminance NR without softening detail, when using Adobe Camera Raw or Lightroom. It does not harm sharp detail much if left alone; if this sensor actually has an AA filter, it’s very weak.

Macbeth_ColorChecker_RGB

This a MacBeth ColorChecker rendered using the official sRGB values.

iso200colourchecker

This is an ISO 200 shot on the A58 with the greyscale white balanced to match the above, Iridient Raw Developer conversion using Iridient’s A58 profile. See later comments on colour and reds.

As for dynamic range, it falls off as the ISO in increased. At ISO 100 or 400 a typical high contrast sunlit scene is perfectly recorded, with only bright specular highlights clipping to 255-255-255. It can handle everything from shadows on dark areas to direct light on white. A few practical comparison shots show that the RX100 can do exactly the same things – indeed, precisely the same areas clip at the highlight end.

This simply indicates to me that Sony has matched the processes used in the two cameras against a common exposure and contrast standard. I’d have the rate the JPEG engine of the RX100 a little better than the Alpha, and images seem to need less work. Against the Alpha 99, the 58 gains some significant processing speed in raw converters as it’s producing 20 megapixel 12-bit files compared to 24 megapixel 14-bit.

Click this for the full size to see detail.

Compare this RX100 shot. It’s interesting.

A hidden benefit of the 20 megapixel sensor is that if you use Adobe Camera Raw, this program offers a range of preset optimised output sizes converted directly from raw, which can be previewed at 100% of their actual pixel size before conversion. All 24 megapixel cameras have this as their largest output size, all you can do is downsample. 20 megapixel cameras offer a 25 megapixel output option, as do 16 or 18 megapixel models. The RX100 has already proved to me that it can make a 25 megapixel image that’s hard to tell from a native A77/99 image. The same goes for the Alpha 58. It can be set to export to this larger size, and if you use a top grade lens and low ISO, the result will be better than a native 24 megapixel at higher ISOs with a medium-quality lens.

Overall, I find it hard to rate the new 20 megapixel sensor as better than either the classic 16 megapixel ‘sweet spot’ sensor or the maximum 24 megapixel APS-C, but it is as competent as either of these in its own right. I guess the truth is that at all these resolutions, superb image quality is possible.

Other aspects of performance

Since the A58 uses the 15-point, 3-cross AF sensor which has been proven ever since it first appeared in the A580 and A55 it has identical performance; fast, very accurate AF down to EV -1 (50mm f/1.4). The exposure metering is, again, the familiar 1200-zone Sony system and works down to -2EV.

The actual focusing mechanism works no better with SAM or SSM lenses than with screw drive. It’s not the best ‘old’ mechanism in there and it lacks fast/slow AF setting, but it’s fast for certain. In low light although AF will lock, it needs a good target. Throughout my use of the camera I found the focus the least accurate and consistent of any Alpha body I’ve used, leading me to question whether I had accidentally set the lens to MF, so many pictures were clearly focused on some other plane than the subject, nearly always a definite back focus. The AF module is officially the same as the A55, A580 and so on. I can’t help thinking it is the same design but perhaps, like the rest of the camera, built to a budget.

The A58 couldn’t really back focus this shot at f/8 but it took three shots to get one sharp.

Click the RX100 (f/5.6) example too, to see the real difference.

Switching between rear screen and EVF using the eye sensors, or if you have the rear screen off just turning on the EVF, is good on this camera. Its balance tends to prevent the eyepiece sitting against your chest, and thus avoids accidental activation, but it’s always brought the EVF into action by the time your eye is close enough to use the finder.

Regrettably the EVF and rear screen both lack the instantly visible high resolution needed to know whether your image is pin-sharp. Even the far superior finders and screens of the A77 and A99 do not give you the same awareness of this as an optical finder. The good news is that Focus Peaking can be turned on. This really isn’t sensitive or accurate enough unless you magnify the image, and much of the time, you simply don’t have time to do this.

So, the A58 is capable of pin-sharp images and you can be sure under the right conditions with the right technique that you won’t be short changed out the 20 megapixels you expected. But a lot of the time for everyday shooting it’s not very good at getting AF pin-sharp, and those same 20 megapixels do their best to show any error clearly.
In practical situations, ISO 400 is as noise-free as ISO 100 and gives you the chance to use a smaller aperture for more depth of field. The 18-55mm SAM II lens is not very sharp at 55mm wide open, and it proved optimistic to expect f/6.3 or f/7.2 to be much better. The old ‘one stop down for zooms’ rule works well enough. The 20 megapixel sensor shows signs of slightly softening at f/11 so the sweet spot for me has to be around f/9 or f/10.

The A58 has slightly warm tones overall and pinkish flesh colour

The RX100 on the same scene is more neutral or cool

You can click the images above for full size versions (same applies to all those shown in link frames like this).

As for colour, you’ll be happy if you have always like Canon DSLRs. not so happy if you were either a Sony (sunny!) or Minolta (full spectrum) sensor colour fan. This sensor shows every sign of having relatively weak RGB colour filters and a non-linear response, with underexposed shadows on higher ISOs in daylight tending towards magenta. It’s rather too easy to get putty-pink skin tones and a certain lack of subtelty in sky gradations, though blues and greens are not bad. Subjects like red flowers test the colour discrimination of the sensor to the limit.

Holyrood gardens

It’s truly intense – but is it realistic? Camera profiles for raw conversion may tame this.

Let’s just say that every other current Sony Alpha model, and many past ones, will yield more visible difference between close hues. This is what you might expect from the more densely populated 20 megapixel sensor but, as ever, I’m left wondering why the little RX100 seems able to yield better colour (whatever DxOMark.com may say – but they also put the low light ability of the RX100 way below its actual performance).

At present there are no camera profiles available when converting files using Adobe Camera Raw, and the Adobe Standard colour seems to handle reds from the A58 badly (this is why I refer to Canon – the reds look much the same as problem Canon reds of the past). I don’t believe that red paint, red clothes, red street signs and red flowers are all are one type of red and when clipping warning is turned on, almost all the reds clip.

Shutter and flash

The shutter of the A58 is able to synchronise short-duration fast triggered flash, such as a thyristor camera top gun, up to 1/250th on manual without any shutter curtain clipping; at 1/320th, a shadow intrudes slightly on the frame. This is a better performance than indicated in the specifications, but for studio flash (mains powered) I would recommend working at 1/125th and for Sony/Minolta dedicated flash at 1/160th.

The shutter itself does not operate or make any noise whatsoever until AFTER the picture is captured when you use ‘Electronic First Curtain ON’ setting. The capping shutter blind has a cycle (close and return) of approximately 230ms overall in single frame mode resetting the camera ready for the next shot, or 115ms for continuous shooting which fits in with 8 frames a second fastest (cropped) frame rate. If you use the mechanical first shutter curtain, this adds exactly 50ms or 1/20th of a second to your release lag, which is not as easy to measure but seems to be in the order of only 20ms (1/50th).

Overall, this makes the A58 one of the most hair-trigger responsive cameras you can possibly own for capturing action – or would if the AF were faster and more reliable. Pre-set focus, use manual exposure, and you can trigger exposures with this camera as fast as you can think – just like the A99.

With its built-in flash or dedicated Sony flash, there’s the usual small delay caused by preflash. You may think the shot is being delayed more, because the shutter operates after the exposure, and then as the finder returns to life you get about 1/30th of a second of ‘review’ of the shot taken even with the 2s or 5s (etc) image review disabled. This happens all the time with the camera, the first frame or two of the finder refresh is a fleeting glimpse of your captured shot, and it’s useful. With flash you may be viewing a dark scene, the finder itself is blacked out when your flash fires, but this sudden bright image looks almost like a delayed flash through the eyepiece. Of course it is not, this is just an impression.

The built-in pop up flash becomes a rather aggressive AF illuminator when flash is active and the camera has trouble finding enough light for an AF lock. You certainly do see the effect of this through the finder, a surprisingly long and bright burst of light. It must drain the battery fast.

Flash exposure, long a problem with Alphas, seems predictable. A pile of black camera bags produces a full exposure (histogram hitting the buffers at the right hand end) while a white paper document in the middle of the frame results in one stop under. No doubt users will find specific flashguns or situations which produce wildcard exposure. That’s why you should always enable DRO+ Automatic or something like level 3 when shooting with flash. This dynamic range contrast optimisation process can produce great flash pictures out of the camera but remember it only works well at lower ISO settings, do not go over 800 and expect DRO+ to keep you smooth noise-free image.

The A58 appears to allow DRO to be used at higher ISOs, which earlier cameras often lock out because of its effect on shadow noise. However, both the printed manual and the downloadable handbook contain many inaccuracies and ambiguities; even Sony’s specification for the camera on-line has problems, listing standard and magnified views in the finder instead of eyepiece glass and surround against the two eye-point figures.

Wireless flash operates in the usual way, with the pop-up flash acting as a commander once paired by first fitting the remote flash, turning on, selecting WL Flash mode, and removing the remote. This is now a 20-year old Minolta technology updated – something which took Canon fifteen years to catch up with, after which they progressed further. The Alpha wireless flash works but it’s frozen in time. At least, with the optional adaptor, you can use earlier Minolta and Sony flashguns of the HS(D) generation and later.

HS is the high speed burst mode (long duration resembling continuous light) and the A58 can use HS flash at all shutter speeds up to 1/4,000th. The A58 has a useful Slow Sync function which delivers and automatic dragged shutter setting according to the available light, and a Rear Curtain sync as well. The camera may, with the built-in flash, switch to a slow longer recycling time even if you load a fresh battery when shooting flash intensively. This is to prevent the camera (not the flash) from overheating.

Studio compatibility

One reason I obtained an A58 to look at was because Ian Cartwright, a friend of mine who shoots models and babies underwater, had obtained an Alpha 580 on my advice to replace an A350 only to find that this camera forces a strange blackout delay of almost half a second when using any dedicated flash. The A350’s otherwise similar Quick Live View does not have this peculiar firmware fault. I can confirm that the A58 fires in real time, and unlike either of the other two models, can be used with PocketWizard or an infrared trigger. That’s because the finder view can be switched to ‘Setting Effect OFF’ which defeats exposure simulation and gives you a bright view even in manual with setting like 1/125 and f/11 under dim modelling or ambient light. The A58 can be used in the studio as easily as the A99, because of its ISO hot shot compatibility and this feature.

Dried roses

For this studio shot I chose not to use flash, it was lit by my Interfit 3200 tungsten outfit (great for video) instead. The colour rendering matters little because the image is adjusted in processing to give this look.

As to whether you would ever want to use an EVF camera for studio work, that’s another matter. I have bought a replacement Alpha 900 after three months trying to use EVF for studio set-ups and temporarily reverting to my A700. It’s not just the quality of what you see when composing and adjusting your studio shot (stray hairs over a face or a clothing fibre landing on your still life are just not visible with EVF) it’s the need to have power saving permanently turned off to keep the screen or finder awake as you do all the lighting and reflectors, background and subject adjustments. Nothing is more annoying than having to half-press the shutter to wake up your camera every time you go back to check – and with the A58, the shutter release is so light it’s easy to take a shot instead of waking the finder view.

The A99 can be used tethered and plugged in to AC, with a USB cable to a remote capture Mac or PC, and a live feed to an HDTV monitor. Do that and the business of setting up and adjusting a studio shoot becomes far easier with live view. I just don’t do enough work of any kind to justify that, it’s quicker to keep using the old familiar glass prism. It looks as if the A58 can be used the same way, joining the A77 and A99 by having PC Remote capability and HDMI previewing, while the A900/850/700 are the only other choices in Alpha history able to use PC Remote.
This does open the door to using a netbook, for example, as an intervalometer timer or remote release. There is no App for iOS or Android but the PC Remote control panel is well designed to fit a smartphone. There is no Wifi in the camera (it has good compatibility with EyeFi cards, invoking special display icons).

Video

Due to the softness and lack of AF sensitivity of the 18-55mm SAM II lens, my couple of quick test videos in real situations were not stunning but also not too bad. The sound quality is reasonable without plugging in my Rode Video Mic, stabilisation of video is very good indeed, and by using the dedicated video setting I was able to set my own shutter and aperture. You can also lock out the movie button except when the mode dial is set to video, preventing accidental video clips.

If you want the camera for video, either the 18-135mm SAM lens or even better the 16-50mm f/2.8 SSM (quiet fast focus) will do much better than the 18-55mm. The A58 lacks the highest quality video encoding of the A77 and A99, but you can get the vital requirement of 25/30fps at 1080p, the second highest level found on other Alphas. The clip above is at best quality with the 18-55mm; it took some fairly extreme action (the car driving right towards the lens) to persuade the AF to bother to try to track, most of the time it was telling me, hey, that’s good enough, no need to refocus… or even focus to start with.

Special functions

Although the A58 has been trimmed down in some ways, other aspects have been improved, compared to past entry-level cameras. There is no wireless remote drive mode, and no 2sec self-timer, so unless you buy the unusual Micro USB wired release you have to use a 10sec timer for shake-free tripod work.

Bracketing is only three frames, but the range is now large – 0.3EV, 0.7EV, 1EV, 2EV or 3EV steps. HDR Auto can also use a 6EV span (±3EV). You can not control the auto ISO range, but it’s a reasonable 100-3200. If you shoot JPEG and choose multishot noise reduction, an auto 6400 may be selected, and some of the Scene modes may also enter this range. But if you shoot raw, you have to select ISOs from 4000 to 160,000 manually which makes them harder to get by mistake.

There are many picture effects, both single and multi-shot, in the A58. One of the more interesting is Rich Tone Black and White, which uses three shots to build a gradation resembling a traditional darkroom print.
The sensor does not appear to support sub-frames, or cropped raw files, in the same way the A99 or Nikon D600 can do. The maximum frame rate for continuous shooting is 5fps for full size raws, but the buffer is minimal and the best I could get was four frames in a burst before a major pause and intermittent resumption, never at 5fps. On raw you get click-click-click, off to make coffee, click, take a walk round the block, click, remember to turn the lights off before going to bed. It’s that bad. JPEG Fine, which delivers 4 frames at 5fps, then becomes intermittent and variable in capture speed but a little faster than raw.

To get anything better, you must convert the camera into a 5 megapixel 3X factor (2X crop of the 1.5X sensor) by setting it to T8 (Tele 8fps) continuous mode on the main control dial. This delivers about 8.1fps for 24 frames on a 95MB/s SanDisk card, then slows to capture around 5-6fps in a regular pattern of two frames at 8fps, hesitation, two more and so on. On a slower card, Transcend SDHC, I got 12 frames continuous and a slower more regular tail. Memory card speed is clearly critical for getting the best from the A58.

Since you can’t get a 5MB cropped raw, exactly how this mode functions is a bit of a mystery as JPEG images are produced via an intermediate raw file – that’s how things work. So inside the camera, 24 frames can be processed and cropped in 2 seconds – but it can’t even manage one second of unprocessed raws at 5fps. This indicates the processor is fast and the input buffer big enough, it’s the output buffer and card interface which causes the bottleneck. Card interfaces and drive assemblies are third party products normally bought in by the camera maker, while the main processor is their own (or a dedicated design based on a Fujitsu module or other OEM).

This camera is extremely low cost and I think this is simply one area where cost savings ended up reducing what could have been a great specifiction and performance.

Digital and Clear Image Zoom

The A58 has a Zoom button, like a Cyber-shot DSC RX100’s zoom control that goes beyond the mechanical range of the zoom. Since you can’t go beyond the zoom on the lens itself, you go to the tele extreme, press the zoom button and a bar appears on the displays. Up to 1.4X magnification, you get a cropped shot (JPEG only) but this crop fills the EVF/screen and is enlarged by interpolation to 20MP. Up to 2X, you get Clear Image Zoom which is profiled or custom interpolation, similar to software packages which can enlarge JPEGs better if they have a profile for the camera used. Up to 4X, the rest is ordinary Digital Zoom which means the resulting 20MP image has really been created from a 1.25MP area of the sensor, and it shows.

Fine JPEG, normal shot

Interpolated Zoom 1.4X. 18-55mm at 55mm.

Clear Image at 1.9X (all at f/8)

Digital zoom to 4X.

I made some tests with the 18-55mm and its vague focusing and overall modest quality lowered the bar for the digitally zoomed range. Then I tried with my extremely sharp Sigma 70mm macro. I think the 1.4X range is acceptable for all normal uses, the 2X range is almost acceptable, beyond this the softness overpowers any possible reason to want a 20MP output file. There is a mark on the zoom bar showing the change from resized and Clear Image (1.0-2X) to Digital Zoom (2.0-4.0X) but I was unable to get the zoom to fix on 2.0X, instead it insisted on using 1.9X or 2.1X but placed the 2.1X on the ‘safe’ side of the mark.

70mm macro, raw shot at f/10

Fine JPEG of same ISO 200 shot.

1.4X interpolated zoom.

2X Clear Image zoom

4X Digital Zoom. Still 20MP…

As expected, the A58 has Sony’s excellent sweep panorama mode, and just about every other Sony original technology around from face recognition and smile shutter through to auto framing (an intelligent crop which keeps a copy of your uncropped JPEG too) and AF object tracking. Its Intelligent Auto and Super Auto modes will serve the beginner and general family photographer well.

The A58 has sensor cleaning and does vibrate the sensor on shutdown, not on switch on; this is not listed in the specification, which just mentions the anti-static coating. Manual cleaning is possible and Sony make two notes of interest – they advise blower cleaning the back of the mirror before lowering it (so clean both this and the sensor in one step) and they say that you can not shoot with the mirror raised. My camera had no sensor spots on delivery.

Future expansion

The A58 shares with the NEX-6 and Cyber-shot DSC RX1 the new Multi Function Shoe, and some of the accessories for this shoe are futureware. All these cameras lack the GPS found in the A99. The Multi Function Shoe’s interface includes pins to connect a GPS device and record location data as you shoot.

alpha99-shoe

Despite my affection for the robust qualities of the little Alpha 55, the Alpha 58 does more and when armed with my 16-80mm CZ lens makes a good travel camera. For that, I want to have GPS. So of all the possible future accessories for the shoe, this is the one I hope Sony will produce soon. Other possible accessories are a Wifi remote shooting module (the interface could allow image preview remotely) and a PocketWizard or similar wireless flash trigger. The shoe interface might even enable uncompressed video streaming to external recording devices, or back up between the camera and an external SD card or USB stick. It can also feed an external larger video monitor or a mic/headphone module which might have auto gain over-ride for sound recording – or perhaps these functions may be combined one day in a video/audio adaptor.

These are the prospects which this one change in the Alpha system brings, yet there is no sign that Sony is rolling out MFAS accessories. It’s also true that each camera’s own MFAS may have missing pins, or differently assigned pins (that would be seriously bad planning). You can not, for example, use the EVF of the RX1 on the A99 shoe, though both cameras have 24 megapixel sensors and the same EVF display resolution. The camera does not recognise it.

SONY DSC

Made in Thailand – not a bad thing, and Thailand has a big camera industry with Nikon, Sony and others. But this does feel like the lowest cost, most pared-down offering ever in the Sony DSLR/SLT lineage.

Changing the market

It is a pity that a camera with a brand new sensor and many advanced features and functions should ever have been designed down to the lowest price-level by reducing the specification of far too many components, from the lens mount and body itself to the displays and the buffer and card interface.

Sony’s manual and general approach to the camera menus and built-in help indicate that it’s targeted at what Americans would call a ‘soccer mom’ market. Well, your own kids are always beautiful even if the rest of the internet community groans inwardly every time another snapshot of infant overfeeding is posted to support how wonderful dad’s new camera is. They are always polite and agree.

Same goes for this camera – for those who acquire it as a new addition to the family, it will be the best thing ever made. And in some ways they will be right, nothing else comes close for the money. Unlike the sprogs, the Alpha 58 has inherited many desirable genes but suffered from malnutrition during its gestation. It could have been a robust, capable semi-pro camera in the tradition of the A580, the last Sony Alpha to have an optical finder.
Perhaps the 20 megapixel sensor will appear in a higher level body. How about an A68? For me that would be close to home (look it up on a UK road map!).

– David Kilpatrick

Frank’s a definite Alpha Male

We shall be sending Frank Doorhof one of our original and rare Alpha Male T-shirts, in black, though I’m not sure we have anything quite large enough to fit him – which goes for his personality too. He’s a great workshop presenter, overcoming technical problems by just cracking on with whatever will work best. At Edinburgh for The Flash Centre’s full day fashion seminar with Frank on May 24th, the last thing I expected was to be using the same camera as Frank. All workshop leaders use Canon, right?

Frank now uses Sony Alpha 99, and he had a lot to say about it. Since we already know the benefits of the Alpha system and the current Sony full frame 24MP sensor with its extreme 14-bit dynamic range, most of what he said was not new, but it’s rare to hear a course leader extol the virtues of a system which not one of his delegates (apart from me) was using. He did rather talk down the value of CZ lenses (while using a 24-70mm CZ) and praised the quality of his vintage Minolta 85mm f/1.4 and 35-200mm xi, but I can’t argue with that as I’ve made similar decisions. Indeed, the 35-200mm owes much of its reputation to results we published seven years ago. I was beating him at his own game by using my SAM 28-75mm f/2.8 – cheaper by half than the CZ 24-70mm, and extremely sharp.

doorhof-church

We had a rare sunny clear day in a run of mixed weather, though it was cold and windy on the roof terrace of the Glasshouse Hotel in central Edinburgh. The location provided strong backgrounds and details. Simon Burfoot and Chris Whittle from The Flash Centre brought along the Ranger (battery location) and Ranger Quadra (lightweight version) flash systems with Elinchrom Skyport wireless triggers. Of course, in the past if you turned up to a workshop with an Alpha body, you were unable to use the wireless flash connection unless you also remembered to bring a standard hotshoe adaptor. With the A99 (and NEX-6, RX1 and future models) the new Alpha multi function accessory shoe works directly with triggers.

Frank put everything into using just one light source, and used no reflectors, aiming instead for dramatic lighting by underexposing the main scene but lifting his model subject Nadine by local flash. This was achieved with the 44cm rigid square softbox, newly re-introduced to the Elinchrom system (I have used the original grey one for over 20 years – you only need to buy these expensive accessories once in a lifetime). Fitted with a honeycomb but no diffusing scrim, the single lighting head with this light shaper put a tightly controlled pool of light on to his subject. Though it’s easy to use digital SLRs as a pre-test light metering and flash balancing method, Frank works with a Sekonic flash and ambient light meter able to take incident, reflected and partial spot readings. It is very similar to the discontinued classic Minolta Flashmeter IV/V, with the same 1/10th stop accuracy and display of contrast and memorised values. If I was doing this type of work, I would use my Flashmeter IV, but I would also use its calibration function to match it to specific ISO settings on the A99.

doorhof-setup2

Frank’s wife Annewiek used multiple video cameras to film the workshop, as Frank provides his on-line tutorial material through Scott Kelby’s training site. Here you can see one set-up as he explains how he’s seeing the location, addressing the used of the glass window wall, avoiding unwanted reflections, placing Nadine in the shade then adding the flash to match an underexposed daylight scene. To achieve the required settings, he used ISO 100 at apertures around f/16 to f/22, with a 1/160th shutter speed, and mechanical first curtain shutter. I also followed these settings, which are not kind to sensor dust spots. Anyone using a Nikon D600 would have been in serious trouble! Even my ‘clean’ A99 which never needs any spot removal at my regular optimum working apertures between f/8 and f/13 showed a few visible spots at f/18. I would have used ISO 50, which I consider to be an advantage of the A99, and trusted shutter speeds to 1/250th with this camera for flash sync. But Frank was dealing with photographers some of whom had cameras incapable of shooting at less than ISO 200 or synchronising with studio flash at 1/250th without a slight second curtain crop to the frame. It would not have been fair to demonstrate using the advantages of the Alpha 99…

I did have in my bag, and normally carry, a 4X ND filter. With the Alpha 99, fitting an ND filter has absolutely zero effect on the viewfinder brightness, or the quality of view in sunlight. After all, sunshine with a 4X ND is just like a cloudy day in brightness, and you have no problems on a cloudy day. You can work with an ND just as ‘transparently’ as you can use an UV filter. An alternative would have been to use a polarising filter, which can also enhance the dramatic ‘dark sky – bright subject’ mix. However, Frank wisely kept clear of this. Polarisers have some pretty horrible effects on fabrics, skin and hair. Use them on portrait or fashion shots only with great care. Digital sensors are usually able to do deep blue skies without help.

doorhof-elinchrom44-web

Here’s the Elinchrom Ranger head as used. Frank asked delegates to restrict themselves to three shots per situation, a request generally ignored. I took some before the flash had recycled, to show the effect of the scene without flash, and with flash.

doorhof-set2-shot-web

This was my ‘take’ on this setup and it’s probably different from most as I used a 12-24mm Sigma HSM lens at 12mm. Now Frank did not explain to the photographers how he was using his electronic viewfinder, and I didn’t ask, but I’m sure he had it set to over-ride manual setting gain, as he was shooting on manual (M) with a degree of underexposure that would have made the finder extremely dark. I didn’t change my setting and though for all the other situations I was able to compose well enough, for this set-up my EVF showed nothing but solid black where the model was. As a result, I did not see what an ungainly shape was made by the extreme angle of the 12mm lens for a couple of poses.

alpha99-noview

The left hand side is very much how my finder looked. I don’t like this result, but I could not tell until after it was taken. Nadine was changing poses rapidly. This is one case where the optical viewfinder of my Alpha 900 would have been a better choice.

If you have a Sony/Minolta wireless flash set-up, you can overcome this whole problem. Your remote flash would perhaps need a softbox, or more realistically a small umbrella to match Frank’s localised soft flash and also receive the control signal from the on-camera flash. You would simply set the remote flash to Manual power not TTL, set the A99 (or other EVF DSLR) to Aperture Priority (A), set f/20, and rely on the flash’s auto communication with the camera body to set 1/160th flash sync and ignore the ambient light. You can also do the same with a slave cell triggered by a small camera top unit converted to invisible IR using a gel filter or old transparency unexposed film-end. You can not do this with the sync cable (PC socket) or flash triggers, as these connections do not tell the camera there is a charged flash fitted, and set the shutter speed.

Elinchrom! We need, for Sony and other EVF or LCD screen-only cameras, a flash trigger designed to provide a signal to the pin which the camera’s own flash system uses to auto-set flash sync speed when using Aperture priority. When this is live, the viewfinder brightness is set to auto gain regardless of the exposure mode (PASM) used.

For his first set-up, Frank was actually shooting full lengths from a distance with Nadine making a small element in a large view. I liked the structure she was posing under, and prefer in general to get pictures which are not a copy of the course leader’s work. Although this was also slightly underexposed for the background, I had no problem with the EVF when the subject was in a normally lit area.

doorhof-set1-shot-web

You may say, the subject was in sunlight anyway, so why use flash? The dual lighting gives a filmic look, like a movie set lit in Californian sunshine (and Scotland’s legendary blue skies complete the illusion). This essentially sidelight from the sun, with a frontal fill you can see most clearly on the fingers of the left hand glove.

For a further set-up, Frank moved to the roof terrace view over the north of Edinburgh towards Leith and the Forth (first image on this page). He had demonstrated sets suitable for normal to wide angle lenses, using the 24-70mm, and switched to the 70-200mm f/2.8 Sony SSM G for a different relationship between the model and the background.

doorhof-churchview-noflash-web

This was the view without flash – not a bad set-up as it stands. When processing my images, I found that the in-camera standard JPEGs of the A99 handled the red of the dress better than almost any setting or camera profile using Adobe Camera Raw. Colours like this are a good case for trying alternative raw converters, such as DxO Optics Pro or Capture One Pro. Their camera profiles are generally closer to the in-camera conversions than Adobe’s. Frank demonstrated how to use the MacBeth ColorChecker Passport colour patch target and its camera profiling software to create an on-the-spot profile for better ACR/LR conversions.

doorhof-churchview-flash-web

This is the shot with flash, again, in-camera JPEG sRGB. AdobeRGB would retain more potential detail in the red, raw conversion to 16-bit using ProPhotoRGB the maximum. But for that you also need something like a Eizo 10-bit monitor with a matching video driver, and no Apple Mac made comes with that. Build yourself a tower system and it’s just about possible to get 10-bit colour… but not using Mac OSX! My monitor is a regular old 27 inch iMac and if it’s 8-bit it’s having a good day. The colour looks lovely, but accurate it certainly is not. I don’t mind as 99% of all the screens any of my images will ever be seen on are no better, and the printed page is far inferior. Putting the above pictures into print would almost guarantee the differences you see here are lost.

smallscreeneducation

Because the Glasshouse’s rooftop function suite has a white translucent fabric roof, the overhead projector could not be used. So, Frank sat down with his laptop and the photographers. Later on in the day, the group moved to an inside room, and he demonstrated a series of processing steps in Lightroom with special attention to the use of plugins producing Clarity, pseudo-HDR and ‘image look’ and to fashion and beauty retouching.

To read more about Frank’s work, visit his own website www.frankdoorhof.com or follow him via Kelby Training. He regularly does workshop tours. I’ll be reporting on some of his views and hints for professional photographers, specifically, in the June 2013 edition of Master Photography magazine (you can subscribe here for this 10X a year magazine which we also produce).

For more information on the Elinchrom flash system, Skyport wireless triggering and battery powered Ranger/Ranger Quadra location flash, see The Flash Centre website.

– David Kilpatrick

Colour and power benefits of Sony 20 megapixel sensor

A58_wSAL1855-2_TMT_01-1200

Sony has now released full details of the Alpha 58. Although I don’t think the camera is a game-changer or a vital upgrade for owners of Alpha 55 and 57 (the 55 will leave me only when it expires, with its useful GPS, 6fps/10fps and fully articulated reversible rear screen) there are hidden bonuses for anyone investing in the 58.

Firstly, the new OLED finder – probably a step better visually – is a league better in power consumption. The penalty for using the EVF instead of the rear LCD on the Alpha 77 and is siblings has been a sharp reduction in the battery stamina for shots, 470 versus 530 official figures for the 77 as an example. The new finder on the 58 gives a reduction for 700 to 690 – not just an overall improvement, but a minimal difference you can ignore. The smaller, non-reversile tilting rear 2.7″ LCD screen may also be less power-hungry than 3″ types.

Secondly, the camera supports an extended TriLuminos colour gamut. The colour gamut of existing Sony DSLRs and SLTs (and NEX) equipped with HDMI output does not need to exceed AdobeRGB (52.1% of the recognised visual gamut for a ‘Standard Observer’, CIE 1931 vintage). That’s because regular HDTV throws away a stack of this colour, showing only 35.9% of the gamut. That’s why it looks so colourful and bright. The less gamut you show, the brighter and more saturated colours look, for the capabilities of any given display. That may sound the reverse of what you would believe to be the case, until you apply a bit of thought to it.

CIExy1931_Rec_2020_and_Rec_709

TriLuminos gamut is the larger triangle, regular HDTV is the smaller (similar to sRGB) while AdobeRGB falls between the two. One colour space you can use when processing raw files – ProPhotoRGB – is so large is exceeds part of the CIE 1931 colour space.

The TriLuminos gamut is massive. Unlike HDTV, it’s bigger than AdobeRGB and much bigger than regular sRGB (what most computer screens can show). It is 75.8% of the CIE 1931 colour space. That, by the way, is simply a standard based on what a bunch of test subjects could perceive back in 1931 and it’s been criticised for failing to include a wide enough range of genetic backgrounds and learned visual abilities. We all see colour differently (men notably with far less accuracy and discrimination than women, young better than old). If you’re a teenage girl you’ll love the TriLuminos displays. If you’re an old bloke you may not notice…

Sony claims that the A58 can output colours to the TriLuminos TV sets which show “a dramatically expanded palette of vivid, ultra-realistic colours when videos and still images (are played back)”. In theory since AdobeRGB (offered by all Sony models to date) would already show an expanded palette, this might not mean any big change in the sensor. But TriLuminos uses a colour space which requires 12-bit depth and it can’t be used effectively unless the sensor itself is going beyond the range of AdobeRGB. You can’t get out what you do not put in. Then again, if you’re using a normal printer or computer, you can’t get it out anyway. The camera captures colours you can’t see on its own rear screen, in its viewfinder, on your computer screen or in a print.

We can therefore deduce that the Bayer filter colours on the new 20 megapixel sensor may be changed, along with the BIONZ processing and the JPEG colour management and compression (after all, the JPEGs will still be 8-bit and going beyond AdobeRGB risks significant banding in smooth graded colours such as skyn blues). Sony say this is the first ever A-mount camera to offer this colour ability. Will DxO Mark have to change their colour measurements to cope with it?

It is possible the sensor has no colour gamut benefits and that all Sony is doing is expanding AdobeRGB (or the native gamut, which is close enough to AdobeRGB) to fill the wider space of the TriLuminos TV screens, making certain colours appear dramatic in the process, but not realistic. Obviously what we should all hope for is that this improvement starts with the sensor itself.

Since the NEX-3n (possibly not the camera rumoured by Nippon Camera as NEX-F3R) also offers TriLuminos extended gamut but has a regular 16 megapixel sensor, I’m going to have to wait to see what the real colour science experts at DxO, and our various friends in Russia with special knowledge of this field, find. We do have a resident colour scientist but sadly none of the gear needed to analyse this properly.

Whatever the case, we appear to be getting a camera whose new 20 megapixel sensor will have significantly better power consumption which almost certainly also means lower heat generation, in turn meaning lower noise and longer ‘safe’ durations for video. Sony is gearing up for the next phase of HDTV – 4K – and the UHDTV beyond this going to 8K. They will eventually need to produce 39 megapixel sensors for uninterpolated 8K, and this will be the target for both APS-C/Super35 and full-frame between now and 2015 when the industry expects to see the first 8K UHDTV retail sales (those in the UK, don’t hold your breath, we’re likely only to get 4K and may not see that become the standard until 2020).

Nikon has stolen an interesting march by enabling a 1.3X, 15 megapixel crop for 7fps shooting in the new 24 megapixel D7100 – a very useful size almost equal to a 2X crop from full frame. Sony has an unspecified ‘tele-zoom’ feature in the A58 to achieve 8fps. But no-one has so far been able to reveal what the tele-zoom crop is; Sony’s ‘technical specifications’ so far released for the A58 are minimal.

If the same 24.1 megapixel, AA-filter-less sensor is used in an A78 (as some rumour sites think likely) then perhaps sub-frame readout aka tele-zoom will be implemented on that too.

The A58 has a new 18-55mm SAM lens with improved build quality and a redesign to the rear element configuration. Sony says this is to avoid ghosting. We’d be surprised if it was not also to change the exit pupil geometry slightly, in order to work better with current and future phase-detection on sensor models.

– DK

 

 

No new Alphas after the 58 in 2013?

The Japanese industry magazine, Nippon Camera, has posted its calendar of new product releases for 2013. This does not include the Alpha 58, a 20-megapixel revision of the 57 which is not expected to make any significant difference to the choices for DSLR/SLT system owners (that is – it’s not likely to be an imperative choice).

The A58 has already been previewed by some websites, but no opinion has any meaning until the sensor has been thoroughly tested. It may be significantly better than the 24 megapixel sensor in some ways, and better than the 16 megapixel sensor; or it may just be a compromise which has neither the clear benefit of low light performance, or ultimate resolution.

In March, a NEX-7R is expected – this, following Sony numbering, will be a 7 with on-sensor PDAF added and compatible with the revised and new lenses which work with on-sensor PDAF in the NEX-5R and NEX-6. The next month, a budget model NEX-F3R will complete this compatibility at entry level.

The model numbers given by Nippon Camera are different from those rumoured on the web. 7n would indicate no PDAF on sensor, no touch screen where 7R would indicate both. Either way, a new 7 will have the new Multi Function Accessory shoe. F3R indicates built-in flash, PDAF and touch-screen.

In September, Sony is tabled to launch a NEX-9. This is widely assumed, because of the numbering consistency shown so far, to be a full-frame (probably 24 megapixel) NEX E-mount body just as the VG-900E video camera is a full frame E-mount aimed at that market. We believe that Sony will either bundle an Alpha mount adaptor with the 9, as Canon has done for EF lenses with the EOS M, or will wait until the first flush of sales is complete before using this as a price/value incentive.

Listing this as plain NEX-9 may not mean it’s lacking the ‘n’ or ‘r’ or other aspects. After all, the NEX-6 has almost everything new and it’s a plain 6. So a 9 may also have more functions than the VG-900E.

However, it’s very hard to beat Canon’s approach – at airport duty free last week, Canon’s EOS M was selling for £499 complete with kit 18-55mm lens, EOS EF/EF-S lens adaptor, and a medium powered bounce flash.

Nippon Camera does not place any further NEX or Alpha models on their 2013 calendar of predicted launches, despite every indication there should be further A-mount models.

New lenses announced this week include an 18-55mm SAM II (updated focus motor for better PDAF on sensor, hopefully improved optical and mechanical design); a Carl Zeiss 50mm f/1.4 Planar SSM at a very high retail price; and a revised 70-400mm f/4.5-5.6 G SSM II, again probably optimised for on-sensor PDAF performance.

– DK

Sony firmware updates roll out

With new firmware for the Alpha 77 and 99 and most current models now up for download, the promised rush of new firmware is probably complete. The Alpha 77 firmware has errors in the web page for Europe, referring to the Alpha 57 and showing pictures of the 57. This is probably because the page has been based on another used as a template. The firmware, we can confirm, is for A77 and updates correctly.

Note that when using a Windows PC, 64-bit doesn’t work with Windows 8. You have to read the asterisk info carefully to see this. Mac OSX 10.8.x Mountain Lion does work in 64-bit and there is no need to reboot to do the upgrades; older Mac systems must be in 32-bit mode.

The firmware is specified as updating the on-board lens correction list, and for the A99 (v1.01) the ability to use sensor assisted PDAF with some lenses:
Provides support for the following ”Dual AF” function compliant lenses:
SAL24F20Z, SAL85F14Z, SAL135F18Z, SAL70300G, SAL70200G, SAL35F14G, SAL1635Z, SAL100M28, SAL50M28, SAL85F28, SAL300F28G
Provides support for the following automatic compensation compliant lenses:
SAL100M28, SAL50M28, SAL85F28, SAL18200, SAL20F28, SAL28F28

You can find the A77, 99 updates and some other software via these links:

http://www.sony.co.uk/support/en/product/SLT-A77/updates

http://www.sony.co.uk/support/en/product/SLT-A99/updates

To find the updates for other cameras change the URLs to include SLT-A57 (to version 1.04), SLT-A65 (to version 1.07), SLT-A37 (to 1.04). There are no updates for the A33, A35, or A37 and no updates for DSLR models such as the A580.

There are also firmware updates for the NEX series, including the 5N:

http://www.sony.co.uk/support/en/product/NEX-5N/updates

The benefits for the 5N are considerable especially if you want to buy the pancake 16-50mm lens. Here is Sony’s list:

  • Applies automatic compensation to “SELP1650”
  • Updates RAW data format version
    *After this update, distortion correction of RAW data will be available with Image Data Converter Ver.4.2 or later. The latest version of Image Data Converter is available on the following site: http://support.d-imaging.sony.co.jp/imsoft/Mac/idc/us.html
  • Adds bracket shooting exposure settings (three frames / 1.0EV, 2.0EV, 3.0EV)
  • Makes “SELP1650” retract immediately after turning off the camera
  • Improves autofocus operation stability
  • Enhancement of AF response: When subject distance changes enormously.
  • Improved stability in certain camera operations:
    • When setting [Lens Compensation: Distortion] “Auto” and [Picture Effect] “Miniature” at the same time.
    • When setting [Exposure Compensation], [Intelligent AF] operation improves.

Again, to find your updates, just change the model number – there are updates for the NEX-F3, NEX-5R, NEX-6, NEX-7 but not for the NEX-3, NEX-C3 or NEX-5. Improvements are given in the instructions and include correction for the 16-50mm on all cameras.

There is one software update – Alpha 99 compatible Remote Control 3 (USB control, shooting and image transfer from PC or Mac) is now released:

For Windows: http://www.sony.co.jp/imsoft/Win/

For Mac OS: http://www.sony.co.jp/imsoft/Mac/

The same software can also be used as before (RC2) with Alpha 700, 900 and 850, reinforcing the value of these excellent DSLRs which were Sony’s three most professionally specified optical viewfinder models in their time (2007-2009) and remain so. The Alpha 77 is not supported. Settings can be changed on your computer, the camera can be triggered, and the resulting files stored on the computer.

RC3 is a stand-alone program now and does not require to be part of the Image Data Suite. It is Mac OS 10.8 (Mountain Lion, on Intel systems) and Windows 8 compatible (but not 64-bit Windows 8).

There is also a NEX lens firmware update, which can only be installed using an updated NEX-6 or NEX-5R (not a 7, or any other model).

Lens Firmware Ver.02: SEL1855, SEL18200, SEL55210, SEL24F18Z, SEL30M35, SEL50F18 (Windows computers procedure)
Firmware update , 05/02/2013

Lens Firmware Ver.02: SEL1855, SEL18200, SEL55210, SEL24F18Z, SEL30M35, SEL50F18 (Macintosh computers procedure)
Firmware update , 05/02/2013

Each lens is a separate updater so you need a well-charged battery and a little patience in order to update all your lenses. At the time of checking, there are no firmware updates for the LA-EA1, LA-EA2 or LA-EA3 Alpha lens adaptors for NEX.

 

 

Sony’s Alpha 99 – mastery wrapped in dilemma

alpha99side

The launch of and initial reaction to Sony’s Alpha 99 has been spoiled, for many, by the overpricing of the camera generally and to a greater degree in some key markets. The promise of the SLT design, and Sony’s move away from flapping mirrors and optical prisms with their associated collimation and alignment, was one of reduced manufacturing cost and more competitive product.

Along with this, we should remember Sony’s 2006 statement that external mechanical controls, switches and buttons would be reduced on future models for the same reason. The Alpha 99 has as many external physical controls as any predecessor and will make traditional users happy.

a900toa99

Compare the Alpha 900 and the Alpha 99 – despite apparently very different designs, they share many points and clearly come from the same gene pool. There is no longer any need for the largest glass prism of any modern DSLR, the power switch has moved to Nikon position round the shutter release, lines are rounded off. The construction is similar as the strap lugs fitted through the outer skin into the solid magnesium chassis indicate.

a900toa99rear

From the rear, the 900 looks somehow more complex because of the left-hand button array. In fact the A99 has just as many buttons (it is only missing a SteadyShot switch and the selector round the AE lock button for metering method – this is no longer as important with the 99 doing its metering directly from the imaging sensor).

Out there we find Canon’s lightweight travel-friendly full frame 6D appearing at £900 lower launch street price (UK) with both that essential built-in GPS and the marketable function of WiFi, and Nikon’s almost comparable D600 officially at a £500 lower RRP, and a street price match for the Canon. In practice the UK Sony price of the A99 fell from £2499 to £2299 in the first two months on sale; the D600 fell from £1955 to £1495 in the same period (WEX dealer figures) and on that basis we can expect the see the Canon fall to £1395 in early 2013. By then the A99 may have fallen to £2195.

Sony lenses are not cheaper, nor wider in range of choice or sources of supply, than Nikon or Canon. There is no collateral benefit when you hand over as much as 50% extra to Sony for their innovative cost-saving technology. In my British Journal review, I concluded that the Alpha 99 was between 30 and 50% over-priced and combined with the cost and limited range of Sony lenses there would be little good reason for any new full-frame entrant to prefer Sony over Nikon or Canon.

At the same time, the Alpha 77 – so close a sister to the 99 that it shares exactly the same EVF and the same file size, with identifiable advantages in some respects – has been selling for £819 body only in the UK when the 99 in the same store was priced at £2299. That’s 64% less, 36% of the price or just over a third. You could almost buy three A77s for one A99. And it even has that very useful built-in flash.

a77-a99-topaligned

You may pause to work out which of these, photographed to exactly the same scale (one shot) and then moved so that their focal plane markings coincide horizontally, is the 99 and which the 77. The 99 is actually bigger but looks smaller.

a77-a99-sideheight

This will give you a better idea of the height of the A99, and also the improved eyepiece which puts your eye further away from the camera screen or back than the A77.

Assault and battery

In fact, there’s a hidden penalty in addition to the high price of the A99. The Nikon D600 with its single 1900mAh battery as supplied will keep on shooting into four figures where the A99 with GPS enabled manages a couple of hundred on a good day with the wind behind it from 1650mAh. Officially it does over 400 without GPS. That was not my experience, any more than it has been with the Alpha 77.

Perhaps this is because of the odd conditions Sony uses to measure battery life – only using a MemoryStick PRO Duo card not SD, no card in slot 2, ambient temperature 25°C, shooting Fine quality JPEG only, shooting one frame every 30 seconds and turning the camera on and off every ten shots, and not having GPS active. Needless to say I shoot raw, back up to a second card with JPEG, and have GPS active. That’s why I bought the camera…

d600-a99fronttop

The economical Nikon D600 is a direct competitor, despite rabid claims on internet that the 99 is ‘professional’ and the 600 is ‘consumer’. They are both semi-pro models but the 99 probably has a better shutter mechanism and a higher precision body. The Nikon has better image quality and battery life. Both have similar dual card slots, manual adjustment of audio input for video recording, wireless flash options, grip and so on.

d600-a99rear

GPS eats batteries. We’ve got a GPS module for the D600 which runs off the camera’s power, but so far have not had it switched on permanently for a week. Maybe it will reduce the D600 to the same ‘battery every day or two’ as the A99. The Canon 6D is the only other DSLR made with built-in GPS. Unlike the A99, the 6D does not turn off its GPS when you turn the camera off. Result? The 6D drains a battery in four days, flat – dead flat 0% – if you just switch the camera off and leave it in your bag with the GPS symbol showing. You have to go into a menu and turn off Enable. At least the A99 does not draw on its battery at all when switched off, regardless of settings.

d600-eos6d

The EOS 6D compared with the D600 – it’s smaller, lighter, and built to a far more consumer-level standard with minimal controls. But like the 99, the 6D has GPS on board, and as a ‘first’ in this field it includes WiFi, which is not just file transfer. We used a free iPhone app to view, focus, adjust settings and shoot remotely and wirelessly with the 6D (EOS Remote). This is bound to win substantial sales.

You need deep pockets in two senses for two extra Sony batteries (£136) or the add-on vertical grip at £299 plus two batteries (not included). The first option will keep you going without GPS about as long as the Nikon on one charge. If you are travelling and using GPS, be prepared to change and charge one battery daily.

Another reason for this short battery life is the electronic viewfinder. Unlike any optical prism finder, it uses as much power as shooting video. Even if you turn the camera off every time it leaves your eye, the typical length of time needed to compose and follow subjects will add up. I do not have review enabled, and I rarely ‘chimp’ because one big plus side of the Alpha 99 – as you will learn – is the near 100 per cent success rate achieved by its metering and focus. If you use the rear screen for composition instead of the eye-level finder, you can extend battery life by 16%.

Sony must be commended for sticking to the same battery format used by all larger body models from the Alpha 700 onwards. I do have half a dozen spares but of course, many are now getting old and barely manage 150 shots in the 99. What Sony must do is to take the advances made in lith-ion production and create a higher capacity NP-FM500H. Third party makers have been able to boost their clone batteries to 2000mAh (I’ve bought two and they are non-compliant with the chargers and clearly don’t deliver what they claim…). Sony’s battery should match Nikon’s similar size at 1900mAh, even if the EVFs now standard across the Sony range will always eat twice as much power as a regular DSLR.

The EVF dividend

Would-be Alpha system professionals and advanced amateur users face a future of electronic viewfinders. The good news is that at photokina 2012 Epson showed a prototype with twice the resolution of the current 2.3 million pixel ceiling, and in five years most current complainers will accept that an EVF can be as accurate as any true groundglass screen ever was.

We tend to forget that after autofocus arrived focusing screens lost their visible granular or laser-cut structures unless you deliberately specified a type intended for manual focusing. Plain old groundglass has a ‘dot’ all of its own because it does break the image up. Minolta’s Acute Matte screen was like a superfine microprism field. The new Epson developments come so close to being as fine as this kind of screen, visually, that you might be able to fool someone into believing it was not an electronic finder.

While the A99 finder is excellent, it falls a touch short of this. It is absolutely identical to the Alpha 77 in every parameter including virtual window size (the magnification figure given by Sony of 0.71X compared to the A77 1.09X is all down to using a 50mm lens on both for measurement). Eyepoint is identical despite the slightly different overall design of the eyepieces and the size of the rubber surround. If there’s any improvement, it lies in the illumination range and contrast control of the OLED unit which has been given one additional user control, colour temperature. You can make the finder warmer or cooler in colour independent of any picture style or WB adjustment.

This is a good example of where the EVF’s great clarity in low light pays off – an ISO 3200 image taken hand-held where a tripod was not appropriate, using the Sigma 12-24mm which has fairly strong vignetting. To see and align the geometry of the shot (bottom cropped off) was much easier on the A99 than it would have been on an OVF camera. Click the image for a full size file.

In full sun, the finder appears very dim compared to any good optical finder. In overcast light, it’s a good match. As the light fails or you move indoors, the EVF shows substantial benefits over optical systems. After dark, it can make accurate composition easy instead of almost impossible.

Here, the A99 has the edge over the A77, NEX-7 and all predecessors even including the NEX-5n and presumably the 6 which I haven’t tried. The larger sensor’s better high ISO performance together with its pixel count keep the coloured noise at bay for another stop or two lower light levels. This coincides with an important transition. The kind of indoor artificial light level where the A99 remains very clean using an f/2.8 lens is typical domestic light – brighter than restaurants, not as bright as stores and malls.

Anyone using the A77 will confirm that the 16-50mm f/2.8 lens brought a real benefit in this sort of lighting despite its other failings, by improving the finder experience. Combine the A99 with a good fast lens like the 50mm f/1.4 and you get a relatively natural view of the world after dark.

The A99 returns the auto eye start sensor, which switches between rear screen and EVF if you have that function enabled, to below the ocular instead of above it as on the A77. This makes viewfinder attachments work without blackout glitches, including Sony’s 1.15X eyepiece magnifier, which for me enables a full view of the screen and a truly impressive finder size.

Ergonomics and control

One of the benefits of the EVF is that you don’t need to use the rear screen at all. The Quick Navi interface developed more or less from A700/900 Quick Navi has to cope with a bewildering number of pictograms and readouts, ranging from a full histogram to digital spirit level, and a complex AF setup. With the help of carefully repositioned buttons, it succeeds. I’d say that the A99 has the best user interface I’ve seen on an Alpha since the 900. The top LCD display panel is much richer than the basic one of the 900, and does not deserve some of the criticism levelled at it for duplicating stuff you can see on the rear screen. I work with the rear screen permanently turned to face the body, unless I am actually employing it for composition or image review. The top LCD provides vital at a glance info about manual or metered exposure settings, ISO, state of ± override, battery power, drive mode, WB, file type and image remaining count.

It is, however, blank when the camera is asleep. Later in this review I’ll be comparing the A99 with the Nikon D600, which we now also own and use alongside it. Nikon’s top LCD shows some basic info (shots remaining) all the time. But it’s interesting to note that Sony gives you the correct information when Nikon does not! Both cameras have two card slots. You can set both of them to work in overflow mode, fill one card, then the next. Nikon shows you only the shots remaining on the card in use. Sony shows you the total. The Canon 6D LCD also goes blank when the camera is turned off, except for showing a GPS symbol to warn you about leaving this battery-eating function Enabled.

a99-modedial

The Mode dial has three memory positions, a Tele 10fps (1.5X crop) position, panoramic, Scene selection, Intelligent Auto, PASM and a separate Movie position. You can opt to lock the Movie button out except when the dial is set to this.

Another similarity is the mode dial, locking on all three cameras. Here, Sony goes for a more purposeful central locking action making it a little harder to adjust the dial. They also cram more on to the dial, including the invaluable feature of Memory 1 2 3 positions (as on the 900). There’s a special movie mode which not only prevents accidental movie shooting, but when used allows shutter, aperture and ISO to be set. The range for this is exceptional, you can film at 1/8,000th shutter speed if you really want to break rules.

a99-mainbuttons

The right hand buttons include Fn, your access to Quick Navi on the screen or in the EVF. There is a new AF Range button which I simply don’t seem to need – I wish this could be customised to become a SteadyShot On/Off button, something I need to do far more often when working with a tripod.

The A99 has a total of 19 operating buttons, some of which have only a single use such as LCD illumination or Playback. The manual identifies 18 primary default functions plus the Silent Controller, of which more later. One button, Fn or Function, accesses Quick Navi and its 23 adjustable settings many of which have multiple choices. Fn can direct access 18 functions outside Quick Navi.

a99-custombutton

Here is where the Custom function button has been moved to – under your left index finger, where the flash pop-up button used to be. Slightly pointless wording on the bright orange anodised lens mount bezel lets you know this camera is not actually aimed at working professionals.

The Menu button accesses six main menu tabs. Still Shooting has four menus covering a total of 20 parameters. Movie Setting has two menus and eleven adjustments. The Custom menu has a huge depth, with six menus covering 33 functions some of which in themselves cover other buttons – five of the dedicated buttons on the body can be assigned any one of 35 functions or behaviours, including their native marked use. The Playback menu has two tabs, with ten parameters. The Memory Card Tool menu also has two tabs and nine functions, needed because you can choose where and how to save raw and JPEG images and movies.

Only the Clock Setup menu remains its usual two-entry basic form. The main Setup menu has four tabs covering 24 settings or actions. If you want to try adding all this lot up, before even investigating the complexity of settings within some aspects like Picture Style, you’ll realise there are thousands of different exact ways in which an Alpha 99 can be configured.

Canon has always had a secret weapon whenever anyone failed to get the expected good results from their camera – ‘ah, you didn’t set it up correctly…’. Now Sony has the same rather weak excuse. Not setting the camera up at all should result in successful images. No buyer should experience Default Setting shortcomings out the box. Setting it up expertly should lead to wonderful, perfectly tuned, almost-impossible-to-get-easily images.

And, I am glad to say, if you get an Alpha 99 out of the box and never touch a single one of these adjustments it is more than likely you will get perfect images. That is because unlike most DSLRs, the Alpha 99 actually works like your eye. It focuses and exposes as effortlessly as you do and you can see far more clearly, through the EVF, what is happening to exposure and focus as you prepare to shoot.

The EVF looks great in dark conditions – no coloured noise like the A55 and A77 generations, as the sensor is so noise-free. This is an in-camera ISO 1600 JPEG, click to go to the original full size file. It’s not bad at all.

Real-world performance

As I’ve said, we have been using the Alpha 99, Nikon D600 and Canon 6D side by side before I started writing this review. I did not have the 6D present when making colour-checker tests on the A99, A900 and D600.

Shirley has used Minolta/Sony since 1980, when we first took over the Minolta Club. Before that she used Praktica (as many students did), Pentax and then Olympus. The OM system was her preferred camera for its size and weight, and the exceptional viewfinder.

Well, after over 30 years using Minolta then Alpha, she’s finally departed from the system because of the change to EVF. Unlike me, she finds EVF view uncomfortable. The Alpha 700 was a great camera but sensor technology moves on, and she happens to be a regular abuser of long focal lengths and low light. The A580 has proved good but the very small optical finder has been an issue from the start. The Nikon D600 with 28-300mm VR lens may not be her ultimate ideal camera – we’re planning to try the Pentax K5IIs with 18-250mm, as that has a very good large optical prism finder. But Sony is now out of the picture and we suspect that she’s not alone. However good EVF technology becomes, some users will never feel comfortable with it.

One reason is the need for perfect accuracy in adjusting the dioptre. Optical finder cameras have a certain latitude, always best with exact adjustment, but remaining sharp over a small range of error. The A99 EVF does not have any latitude. The dioptre is set in clicks, and one click either way puts the OLED display visibly out of focus. If your eyesight changes a lot or you move between spectacles and the naked eye frequently, you will need to make constant adjustments to the dioptre.

The first thing we noticed when reviewing a few hundred raw files taken in  similar conditions with the two cameras is that Nikon’s auto-ISO implementation on the D600 behaves very differently from that on the A99. The Sony metering, especially in Program mode with Auto ISO and wide potential range set, prefers the lowest ISO acceptable for the focal length in use and the available light. Nikon’s system will select higher ISO settings, and smaller lens apertures, very readily.

The Nikon meter is also calibrated out of the box to be generous in exposure, possible because the separate metering system is more influenced by light sources or high contrast and prone to big shifts in auto exposure with minor adustments to composition. At any given ISO, the D600 was often giving double the actual exposure – half of this doubling due to overexposing a bit, half of it due to Nikon’s different calibration of ISO.

dynamicrange-a99

Not only does the A99 have strikingly accurate auto exposure when confronted with very difficult conditions (Sigma 12-24mm shot above covering from deep shade to a white waterfall in sun), it also has 14-bit raw files with generous shadow detail and highlight recovery headroom. Click image to open a larger (not 100%) view.

dynamicrange-histogram

Here is the histogram and totally neutral adjustment set shown in Adobe Camera Raw before fine tuning the shot above to improve the brightness and clarity of the shaded areas. Note the excellent shape of the histo without top or tail clipping.

The A99 meters exposure off the actual shooting sensor, using a 1200-zone colour sensitive matrix and intelligent bias towards single or multiple active AF points. In practice, it proved almost bullet-proof. Anyone who can remember the consistent off-sensor exposure of the old Konica Minolta A2 will appreciate the new Sony EVF and NEX models alike. They simply meter with far better consistency than any camera which uses a separate metering sensor. Of course this can also be said of Olympus, Panasonic and all mirrorless cameras. But they don’t all have the amazing 14-bit raw files and 12 EV normal ISO step dynamic range of the Alpha 99.

When we processed the raw files, Nikon’s ISO 6400 was less noisy than Sony’s despite the very similar (not identical) Sony manuactured 24 megapixel FF sensors. The difference is a little more than we would expect from the 2/3rds EV light loss caused by the trans-flective SLT mirror. The remaining difference seems to be down to Nikon treating a gain which Sony would call ISO 4000 as one labelled 6400, but giving exactly the same exposure Sony would give at 4000. This is not very accurate, as depending on the actual ISO setting the discrepancy ranged from less than 1/3rd of a stop to around 2/3rds, but seems to increase at higher ISO settings. Thus Sony has an apparently clear disadvantage at 6400 or 12,800, but the camera is actually giving half the exposure.

Here are some small samples which, when clicked on, will lead you to our full size set of JPEGs which can be pretty large. These files compare the A99, A77, A900 and D600 at two ISO settings only – 100 and 6400. All are auto exposed under identical conditions using matrix metering, so the cameras have been allowed to give whatever exposure and apparent ISO they would do in comparison. All have been processed using identical settings with Adobe Camera Raw 7.3 – Camera Standard profile (Sony Alpha 900 profile for A900), Linear, default sharpening 25/1/25/0 and no noise reduction at all.

A99 at 100

A99 at 6400

A900 at 100

A900 at 6400

D600 at 100

D600 at 6400

A77 at 100

A77 at 6400

anglescreen-85mm-100th6p3-640

The Minolta 24-85mm at 85mm and f/6.3, 1/100th at ISO 640. A perfectly clean file, critically sharp though only one third of a stop down from wide open. Click image to view a larger (not 100%) version. The quiet shutter and articulating live view screen enabled this natural study.

Although the Nikon lens used was a consumer grade optic the £800 28-300mm VR, when it managed not to misfocus or produce a strange reverse-VR blurring due to Shirley’s initial failure to delay shooting by a tiny amount to allow the lens to settle, often produced slightly sharper results than the 1999 Minolta 24-85mm I chose to use on the A99. Subsequent tests show that the Nikon sensor seems to have a slight fine detail advantage over the Sony at ISO settings around 200-800 with Adobe Camera Raw 7.3. While Canon’s 20 megapixel 6D sensor has a similar high ISO performance, detail sharpness was generally similar to the A99 rather than the D600. Cumulative issues with AF performance, lens field flatness and sensor planarity also led to some Canon images having zones of unexpected defocusing. The A99 has no such problems and I believe it has the same very high standards of sensor flatness and body precision as the A900.

Comparing the A99 with the A900, there is a clear one stop gain in ISO related performance above 1600. But at 100 to 400, the A900 from raw has a kind of fluid quality – the pixels seem to merge and give a luminous yet crisp image. The A99 never really produces this special quality at low ISO, though at the expanded 50 setting it’s impressive. Perhaps there’s an element of illusion in this, that the exceptional optical image through the A900 finder conditions me to see the final picture differently.

The A99 has the same generous 30-lens AF Micro Adjustment calibration as the A77, though I found no need to calibrate except a very small adjustment of -2 for my 28-75mm f/2.8 SAM. I’ve not yet used every lens I own. It also corrects geometry and CA in-camera unlike the A900, for JPEGs. One benefit over the Nikon D600 which does the same is that the EVF shows the true geometry and composition after the corrections are applied. Optical finders can’t do that. This does impose a small extra load on processing and if you are after the fastest overall response should be turned off.

The A99 has one of the best 1080/50(60)p HD video functions on the market. For the bitrate involved, it captures detail three times as good as you would expect. It tends towards a soft compression like the Canon 5D MkII, not a highly detailed frame level image like Nikon’s video. You can stream pure HD video to external recorders without compression, monitor live sound with headphones including provision for lip-sync or echoless real time latency, control the stereo mic/line input with manual gain, and use the Silent Controller during filming for various functions.

silentcontroller-a99

The Silent Controller is a free rotating dial with a push button in the centre allowing you to set its function before each use if you want. The default use is AF-C, AF-S, AF-A, MF, AF-D and there are no clicks. It is silent, for use during movie shooting to change exposure or audio volume (etc).

This controller is placed where the former C/A/S/M focus mode switch was on the 900. It has a central button you can press to reassign a function to it before use. The external knurled collar is turned with one finger, without click stops. By default it changes focus mode. A typical assignment for this during video would be audio volume.

The 99 can auto-crop to APS-C 10 megapixel files when DT lenses are fitted, or if this is set by menu (needed for non-Sony lenses like Sigma DC or Tamron DiII). It can do this for raw files, resulting in a smaller raw, for raw+JPEG, JPEG only and for video. The Smart Teleconverter works in JPEG-only or video modes, giving 1.4X or 2X (4.6 megapixel) stills. In conjunction with the rear controller you get a further continuous zoom range to 4X for movies (native resolution to 3X, interpolated between 3X and 4X, with a very smooth electronic zoom effect). The EVF remains pixel-sharp at 1.4 or 1.5X, but anything more and you can see that the sensor image is being enlarged and is softer.

The 1.5X crop is also enabled if you select the 8fps or 10fps higher speed continuous mode, using the mode dial, rather than the 6fps full resolution mode using Drive settings. The actual sequence burst rates are effectively identical to the A77 and not any better in practical terms than the 4-year-old A900, which unlike the 99 can shoot 5fps Fine JPEGs without a break until the card is full or the sensor overheats. The 99 can only manage 18 frames before slowing. The use of a single Bionz processor with SD storage in the A77 and 99 seems to have been a backwards step, the dual processor of the A900 was better able to sustain a data flow to the fast UDMA CF cards accepted by that camera.

a99-carddoor

The dual card slots – SD and MS Pro Duo upper, SD only lower. The lip surrounding the card slot area is an effective waterproofing channel and the metal spring plate gives the card door a firm, unstressed action.

The 99 does away with CF despite its 900-like body size. Instead, a dual SD drive very similar to that in the Nikon D600 is fitted. Even the spacing of the two slots, and the way the upper card sticks out a little more than the lower, is the same. But the Sony has the ability to accept Memory Stick PRO Duo cards in Slot 1 as well as SD. I find this convenient, as I use a classic Dynax camera strap with a card wallet fixed to it. This can hold spare MS Pro Duo cards, and by chance, the slots for these cards also fit the plastic cover for the new hot shoe exactly – there’s nowhere else to put it, and it matters. The latest MS Pro Duo HX cards offer maximum performance, better than SD UHS-1.

But in the end, despite all its problems, the Alpha 99 simply turns in a better success rate on my sort of subjects – landscapes, street scenes, people, events – than its rivals. The metering is more accurate, the AF is either as good or better, the image quality at high ISOs is a touch lower, the GPS works well, and of course the sensor-based stabilisation is a total winner. Sigma sent a 35mm f/1.4 in Canon fit to test. This lens is quite incredible, and transforms the Sigma offering. It’s so sharp even wide open that the smallest degree of camera shake makes a shot look inferior. I forgot that with the A99, there’s hardly any situation I can not tackle hand held and get pixel-sharp results. I used speeds like the 1/30th or 1/60th on the Canon 6D and lost the exquisite jewel-like edge sharpness of the Sigma. I’m just so used to getting every single shot usable and not thinking about whether a lens is stabilised or not.

This scene didn’t work well with the un-stabilised Canon 6D – I was too cold, and hanging on to a support with one hand while standing half way up a steep muddy slope, with two cameras. SteadyShot worked well on the A99. Click the image for a full size link. ISO 1600.

The new shoe

The new Sony Multi Function Accessory Shoe looks a bit like a rather crude old single contact hot shoe, and its central contact does indeed work to sync with any plain ISO unit. It can be used with Skyport and PocketWizard or generic flash wireless triggers, and I’ve also checked it with Wein infra-red. The three holes round the main contact are locking-pin holes, so beware third party generic adaptor makers. This is a good candidate for getting adaptors stuck.

alpha99-shoe

Under the leading edge of the ‘old’ shoe there is a recess, a horizontal slot not unlike the accessory slot fitted to the first generation NEX cameras. Its gold plated contact strips are very fine, and if this slot was left exposed by failing to replace the cover, it’s easy to see that dirt of moisture could get in. Unlike the NEX slot, there is no built-in spring loaded cover to shield it.

This interface provides the flash connection – duplicating the entire contact set for the iISO or Minolta i-shoe known as the Auto Lock Accessory Shoe by Sony, which is now gone. A small adaptor ADP-MAA is provided with the camera to convert from the new ‘old’ shoe to the Minolta standard. It is as slim and firmly fitting as they can make it, but still felt a little vulnerable with an HVL-F58AM mounted on top, especially when the camera was held vertically. A new flash unit, the HVL-F60AM, has been released for the A99 and in line with current trends it incorporates an LED video/modeling light. This aims forward to double as an AF illuminator, and can not be bounced.

flashadaptor-base

The adaptor ADP-MAA shown with its connectors and the small spring loaded pins and ‘ball bearing’ centre contact to fit the new Multi Function Accessory Shoe.

Audio input is also handled by the shoe for microphone units compatible with the Cyber-Shot/HandyCam/NEX models using the new shoe. Since this shoe also appears on the NEX-6 and the DSC RX1 where it is the only way to input audio, there is some hope for a line/mic module. It is not needed by the A99 as this has a 3.5mm phantom powered stereo jack input, under one cover with a similar headphone output. Both input and output volume levels can be controlled on screen.

alpha99interfaces

This change means that there are now three generations of hot shoe in the Alpha system, and five different shoe or accessory mounts in the Sony still camera systems of the last few years – there’s the Sony CyberShot shoe in two generations used by DSC F series and the R1, the inherited Minolta Auto Lock shoe, the NEX Smart Accessory Terminal and this new Multi Interface Shoe. To say this is unwelcome would be an understatement, but the shoe provides a long-term solution for future development and if you want to create a Christmas tree, it’s still backwardly compatible.

Its 24 contacts cover two different levels of power supply to accessories, audio in and out, flash or wireless flash control and connection, add-on GPS unit (the 99V includes an internal GPS, the plain 99 does not), add-on WiFi module, and EVF or HD monitor feed. We should expect to see a WiFi module and a monitor screen option, while the regular HDMI output can simultaneously send uncompressed video to a recorder. What we don’t know yet is whether the future WiFi module will be as clever as Canon’s built-in WiFi and do more than just send files from the camera. If it has an Android/iOS app for remote viewing and shooting it will be a winner.

The flash system remains with the original Minolta digital wireless TTL protocol as found from the HS(D) guns onwards. There is no built-in flash on the A99 and thus no built-in wireless control. The HVL-F20AM fold-down mini flash made for the A900 as a wireless trigger works perfectly on the 99 with the ADP-MAA but it’s no way as neat. The one benefit is that for direct use, it’s raised a little higher and casts less lens hood shadow while causing less risk of red-eye. We would guess that a new version will appear soon enough. I’ve tested it both directly and bounced, and as a wireless controller.

Flash exposure with the A99 has been exactly as expected – not a wildcard – but short of testing every flash in every configuration, I can’t guarantee against the kind of overexposure found in the A77. All I can say is that my tests, made within the expected range of units using appropriate ISO settings and apertures, have worked well. I do not use flash often outside the studio, and given the performance of the A99 at high ISO settings I doubt I will ever want to.

Any reverse adaptor for the shoe – to allow the HVL-F60AM to be used on Auto Lock shoe cameras – will not of course provide functions other than flash. The Auto Lock shoe doesn’t have any of the other contacts.

My reservations about the Multi Interface Shoe are only that its connector strip looks delicate and each contact has a very small physical contact area. Even the Auto Lock shoe has had its problems with occasional contact failure due to wear and tear or foreign matter.

a99-connectors

There is, of course, also a studio flash PC sync cord connector, threaded, under the same cover as the DC Power Supply connector. Below these is the Remote Cord connector, and between them, a GPS symbol marked next to the loudspeaker. Sony does not give advice which way up to hold the the camera for the best GPS reception. With the Canon 6D, lying on its back face up is the recommended position.

The focus system

Because of the Smart Teleconverter, APS-C auto crop and video crop/zoom functions the A99 needs an AF module perfectly suited to the APS-C or smaller areas. It gets exactly that – the same module as the A77 uses, and that one starts off with leeway to work in Smart Teleconverter mode.

It’s a rather staggeringly tiny 6 x 12mm AF array, one-ninth of the frame area. Imagine the frame divided into thirds both ways and the entire 19-point, 11-cross point phase detect array fits within that modest central rectangle, but forms more of a horizontal ellipse shape within it. No AF points reach into the corners of that central patch.

The manual is deceptive because it frequently shows the AF area and points out of true scale to the overall frame.

a77-AFarea-ona700

This is why you come to photoclubalpha – we do the stuff the others don’t notice! Above, though rather crudely taken due to needing to hold an A55 with 30mm macro up to the eyepiece of an A700 aimed at the rear screen of the A77, is the actual AF module of the 77 (faint squares) overlaid on the AF markings of the A700 finder. This may be out by enough to make the overall AF zones similar , but it looks to me as if the A77 doesn’t quite cover the same extent as the A700, even after allowing for the 96% A700 finder view.

a99-AFarea-ona700

This is the same technique applied to showing the AF zone of the A99. As you can see, it’s the same module as the A77, floating in the middle of full frame. It doesn’t come anywhere near to the extent of the old A700 module, or the A77 in its cropped format frame. It does not even reach the ‘rule of thirds’ favoured points for composition. Coindidentally, the Phase Detect AF-D zone with its 102 tiny sensor spots occupies almost exactly the same area as the square formed by the A700’s top and  bottom horizontal line sensors and triple vertical groups.

sonyafrepresentation

Here is how Sony generally represents the AF zone within manuals. This is not a graphic dealing with AF, and there is no need to show the AF zone larger than it actually is relative to the rest of the display. From the A99 manual.

Sony may have saved some money by using exactly the same module as the A77 but it’s just not adequate. You can compose shots where not a single part of the subject you want to have in focus touches an AF point, and moving subjects can move beyond the active zone all too easily. What was needed was twice the AF area – 1.4X the linear dimensions at least – even if that meant adding further non-cross points.

This module works with all Alpha lenses, from the earliest Minolta screw drive to the latest SSM and SAM. It works down the EV-1 (minus one), the same as Nikon’s 39-point D600 module and four times less sensitive than Pentax’s latest SAFOX design or Canon’s equally tiny central AF cluster in the 6D. It’s still better than AF used to be considering its ability to work optimally with relatively small apertures.

The marked AF-D area is a larger 12 x 12mm square, and when one of the compatible lenses is used and the appropriate AF-D mode invoked with subject tracking, a square array of 102 on-sensor PDAF focus assist points becomes active. I’ve described the result as a fireworks display, though that depends on the lens and subject. Groups of these points can light up, alongside the main focus points, in brief recognition of the subject.

As to whether it works, I can’t say. It turns on and become visible. Does it make any difference? I use both incompatible and compatible lenses. I can’t say that I have been able to spot any real difference in performance, certainly nothing I can observe or measure. All I see is the points light up after the focus has been acquired; they seem often enough just to confirm what area surrounding the chosen focus point is also within depth of field at focusing aperture.

300mm-500f9-iso800-APSC

To get this shot, the surfer had to be kept within the AF area of the A99. I was using a Sigma 70-300mm f/4-5.6 Apo Macro DG lens (which has replaced my Sony 70-300mm f/4.5-5.6 SSM G – reasons of superior sharpness, light weight, size and close focusing prevailed over the superior colour rendering and bokeh of the big G lens). Click picture for a larger, but not 100%, size.

surferfullframe300mm500thf9iso800

Here’s the full frame, 300mm, 1/500th at f/9, ISO 800. You can see I was keeping the central AF point on target because in this case, there was going to be plenty of spare megapixel estate to crop away. I took 115 shots of surfers, mostly single frames but some short maximum speed bursts between 2 and 5 frames, in nine minutes. Not one is out of focus even when the surfers came in closer to the camera at speed. But… they are all within that small one-ninth area of the frame which features the AF grid.

This 102-point zone is also too small, and the wrong shape. It’s a cut-cornered square. I am shooting 2:3 or 16:9 ratio stills or movies. I am not shooting square images. There is a reason, and it is also the reason more lenses do not work with this on-sensor phase detect focus assist. The pixel pairs on the sensor with their differentially angled microlenses use the image forming ray cone in a specific way to detect front or back focused phase shift. To do so, they demand a specific exit pupil geometry and need to be placed relatively close to the lens axis. This on-sensor array can not be extended to cover the entire sensor, or even to extend to a echo the image format more accurately.

In theory, on-sensor PDAF should be extremely accurate, and should be able to work with contrast detection (as it does on other sensors using this technology). But on the A99, they don’t have that function. You can not opt for hybrid contrast detection with on-sensor PDAF; the system is designed to augment the SLT-fed main PDAF module only.

I’ve already observed that the perceived maximum resolution (microcontrast and detail sharpness) of the A99 does seem to be lower than the D600, despite Sony’s zonally graded low-pass filter which I can confirm does improve the performance to the edges and corners for wider angle lenses. The on-sensor PDAF zone is sufficiently populated and large to have some effect.

In case you think I’m talking up Nikon’s AF module over Sony, don’t… the D600 certainly did not focus any more accurately, quickly or reliably than the A99. Both AF modules are small in coverage, and both cameras do have an APS-C crop function including raw file saving and faster burst capture. The thinking has been alike. Ditto for the Canon 6D. That’s got a pitiful APS-C area module with only 11 AF points, ten of them plain old linear f/5.6 the centre one a mere f/5.6 cross with vertical linear f/2.8 (slightly inferior to the Alpha 700 of 2007 in all respects except low-light sensitivity). Canon doesn’t even have the excuse of APS-C or 2X capture modes, you can’t fit any Canon APS-C (EF-S) lens to the body let alone get the optional crop functions enjoyed by the D600 and A99.

So, here’s a new bunch of full-frame choices, and all three turn out to have small-area AF modules. It is Hobson’s Choice.

The A99 can never be rescued from its tiny principal AF zone by firmware updates and owners will just have to live with it. Things could have been designed differently; they were not. The same module is just about right in the A77. It’s lost in the big image of the A99.

Shutter response

One of the more surprising things about comparing the humble Nikon D600/Canon 6D with the advanced Sony A99 is the sound and feel of the shutter action. Both rivals have a low 1/4,000th maximum speed shutter, but are still capable of flash sync similar to the A99 (1/200th for Canon, 1/250th for Nikon, 1/250th for A99) which means curtain travel speed is similar and they simply chose not to permit a narrow enough slot to achieve 1/8,000th.

The D600 with its complete mirror up and down, twin shutter blind and recock action feels and sounds sweeter than the A99 which has no mirror to move and no first shutter blind. In fact, it’s louder and the dB peak for a very brief spike is about twice the volume of the A99 or the A77. But some recording with sound analysis reveals that the A99 sounds ‘louder’ because the actual duration of the sound is almost twice as long, and divided into two distinct clunks.

d600-a77-a99-200th

The D600, like the A77, has a normal single-shot shutter sound of around one sixth of a second, as you would expect from cameras which can achieve 6fps or something close. The Alpha 99 has double that. I timed it at over 300ms, and if first curtain mechanical mode was used, well over 400ms.

It took me a few days and some digging to find out that the 14-bit readout on the A99 only applies one shooting mode – single shot. Any other mode you select, including Lo 2.5fps continuous and all multishot or JPEG only modes, uses 12-bit readout from the sensor. This was already documented in the literature about the A99, but what Sony omit to say is that the 14-bit mode causes a noticeable pause between the shot being captured and the restoration of EVF viewing. This pause is around 1/10th of a second longer in single shot mode than the blackout which happens during 2.5fps or the first frame of any faster sequence, and totals 200ms or 1/5th of a second.

single-versus-lo

single versus lo

Above is an .mp3 link of single frame 14-bit capture compared to 12-bit capture in a Lo sequence setting. The green rectangle on the graphic indicates the extra time used for 14-bit processing; the overall time of the longest sound is over 400 milliseconds – nearly half a second is a fairly long duration for the audible cycle of any modern camera’s shutter actuation.

Thanks to the detailed analysis of audio recording using Amadeus Pro, followed by frame by frame time analysis of an iMac movie clip showing the actual LCD screen blackout period, I have been able to see this ‘dead period’ of blackout and image processing is longer than the entire shutter action of the A77 or D600; indeed, the shutter actions of the A99 surround this hiatus. The card writing light comes on a millisecond or two after the live view blacks out. The action of the shutter curtain being recocked, which accounts for a substantial part of the overall shutter noise, only happens at the end of the 1/5th second pause.

Short of a firmware upgrade, there’s nothing you can do about the extremely slow single-shot shutter cycle or the interrupted finder view if you want the extra quality which comes from 14-bit raw capture. Nikon offer you a choice of 12 or 14 bit, compressed or uncompressed raws. Sony does not offer a choice and makes the bit depth specific to the way you shoot. There is no doubt at all that both raws in single-shot mode, and Extra Fine Quality JPEGs created in this mode, show less noise when adjusted to an extreme. 12-bit capture is fine for lower ISOs, in good light, with correct exposure.

a99-14bitprocessing

The 14-bit raw file has great flexibility for shadow and highlight adjustment from raw without losing colour values or subtle tones. I’d rate it as one of the best raw file formats I have worked with, at normal (100-800) ISO settings. No local dodging has been used above to enhance the backlit scene – just what amount to curve adjustments.

The 3fps Lo motordrive setting was easy to use for single frames, with a light touch. This caused half the finder blackout duration and no more than a 290ms total sound envelope (including all reverberation – the main sound is not unlike the 180ms of the D600 or A77). It didn’t matter what file size and type I recorded or what card was used. This setting always produced the shutter cycle, and sound, I would have expected the A99 to have.

Having observed the way the camera works, I’m afraid I am now rather too aware of it. It makes me appreciate the Alpha 77’s much faster, sweeter action and even consider the A900’s noisy clack with affection. One effect of the longer shutter cycle is to make the relatively quiet sound – 4dB quieter at peak than the Nikon D600 which also has a higher and more intrusive pitch – seem ‘louder’ than it actually is.

What is interesting to me is just how few users, when I asked for information or tests of their own cameras, were really able to hear the differences or see the blackout period. I can thank Gary Friedman for being able to confirm my findings – he could understand exactly what I was looking for. And thanks to several posters on Dyxum forums, whose concerns were with the image quality of 14-bit versus 12-bit, for providing the information I need to put the facts together and realise that no amount of adjusting settings was ever going to make the A99 share the brief blackout and sweet shutter sound of the 12-bit A77.

Gary uses wireless flash a lot. I don’t generally use flash at all except in the studio. Gary has observed delay in wireless flash triggering which is just as long as the entire shutter cycle, and made a great short video which explains this problem:

http://youtu.be/eHrBcT51oE8

I’m not sure if this is a definitive test – there are other trigger flashes which can be used and I’d like to see the times from the HVL-F60AM, F58AM, F42AM and so on. But it indicates that it’s not just me who does not use wireless flash. Nor do Sony’s systems designers and technical team!

The LV dilemma

Sony’s camera line is now totally committed to using the sensor as the viewfinder. This means that whatever performance they can pull from that sensor, it will always be a quantum drop lower than the same sensor used in an optical viewfinder camera. The level of read noise is heavily influenced by the sensor temperature, and continuous live view makes the sensor heat up.

Sorry, I can’t measure it. No doubt someone equipped with the right tools could measure the temperature of the silicon after 15 seconds, a minute, ten minutes or any other period and also allow for ambient conditions. Sony’s handbook reveals that most performance figures and presumably most pre-production tests assume an ambient temperature of 25°C. By my standards, that’s extremely warm, even as an indoor temperature.

There are warnings that the camera may shut down if video or continuous shooting result in an internal overheat. I’m just not going to be testing the A99 to that degree. The best I could do was to set it to ISO 6400 and the highest video bitrate, and leave the camera running in low light, to ensure the highest gain levels.

I’m fairly sure all of the Nikon D600 noise level advantage can be put down to not using full-time live view, and the effect of the SLT mirror. The Sony sensor is almost certainly just as good overall, give or take whatever effect the phase detection pixels may have.

a99-base

Battery – left hand as seen (right hand grip). To the other end, a narrow covered port allows connection of a vertical grip without cannibalising the battery already fitted. The resulting three-battery configuration is the only way to get real stamina for a busy day’s uninterrupted shoot, especially if you use GPS.

LV and EVF lead to very short battery life, and this may be exaggerated if you want to do very long exposures.

So there is the ultimate dilemma – the Alpha 99 is a master of all the functions and features you could want just so long as you want EVF with it. If you don’t, then the Nikon and Canon alternatives will not only be better choices for you, they will save you into the higher hundreds of pounds or into four figures in dollars.

My choice

The Alpha 99 is currently the full-frame camera I’m working with and will stick with until the next generation arrives.

I sold my Alpha 900 shortly after the Alpha 99 arrived. I regretted it straight away, but that is just down to an attachment after four years of familiarity, and a false reassurance that this is such a solid and simple camera it would have lasted me for life. I do not make videos often, but when I do in future I want full control over direct audio input as audio overdubbing from a separate recorder is something I have found very tricky to handle (at least in iMovie, which is what I use).

I didn’t sell my Alpha 77 despite the poor performance in low light, and the lack of the audio level control. It’s far too useful, having 24 megapixels in an APS-C crop, rather than the 11 produced by the A99 crop format. Also, the general colour and grading of video matches the A99 well enough for the 77 to be a second camera. After we bought the Nikon D600, I found the colour and contrast sufficiently different to mean mixing video from Alpha and Nikon was not an option. It also has manual audio input gain – but we can’t team them up. For much the same reasons I have kept my NEX-5n and my Alpha 55.

Could I work professionally with the Alpha 99? Yes. I’m confident it would not let me down in any situation I’m likely to encounter or set up – I do not shoot sports or hard news, events or conferences. Future professional use would be likely to be public relations, corporate brochure, annual report, advertising, industrial and environmental, executive portraiture, products, architectural, building works, stock travel and landscape. Frankly, anything I could once have shot on a Hasselblad can easily be tackled with an Alpha 99.

Despite this, I would be very happy if Sony revived the highest end optical prism DSLR in future. An Alpha 900 quality version of the D600 would have been perfect. And I do not think I am alone in showing some regret for the apparent end of the single-lens reflex Alpha.

– David Kilpatrick

Footnote: elsewhere, the usual comment has been made that I’m wrong to compare this with the 6D and D600 because the A99 is competing with the 5D MkIII and D800. We have a D800E and may acquire a second one. It’s not competing with that; the D800, and especially the 800E, appeal to a different market where using 36 megapixels counts more than several other factors. It is also not competing with the 5D MkIII, which is locked into a huge Canon professional userbase as the one undisputed mainstream body. Nikon has a fragmented position; the D600 isn’t on the right level, the D800 offers benefits many users do not need and loses advantages they want to keep, the D700 is low resolution, the D3s the same and the D3X is priced beyond its specification. Nikon professionals I know all say what they want is a D700 body (and shutter, etc) with a D600 sensor – they would then have a camera at precisely the same level as the 5D MkIII. They would have the one easy no-doubts choice to make the same way Canon users have.

Like it or not, the Alpha 99 is actually competing with the 6D and D600, and it does not matter to the market that some aspects of its construction and specification are closer to 5D MkIII ‘build’. Sony is doing something in enthusiast-level photography right now that it has done well in the past in television and audio, positioning its pricing as a premium consumer brand. The DSC-RX1 specification and pricing tells you everything you need to know about how Sony sees the market.

a99processor

 

This is why the A99 doesn’t even really compete with the older A900. Single Bionz processor (that word saying ‘Dual’ refers to the memory card slot) where the 900 had two – and 14-bit data to process. The SD cards, even Class 10 UHS-1, also represent a bottleneck in data transfer. Using the highest end MemoryStick PRO Duo overcomes this. Photographed on the Sony stand at photokina.

Firmware updates for Alpha 77, Alpha 65, NEX-7, NEX-5R, NEX-6

Sony has released internationally valid firmware updates for both the Alpha 77, Alpha 65 and NEX-7. Both updates have similarities, mainly adding a menu item to lock the Movie button and prevent accidental video takes. This is more important than it might seem, as the Sony memory card structure only permits video or stills to be accessed depending on which function was last used. Having accidental movies shot is frustrating, having to delete them before resuming still picture review has doubled the frustration. Now this issue is solved, but leaving many other Sony models in both Alpha and NEX ranges unmodified.

Revision October 18th 2012: as we check and re-check the Sony UK support site, more firmware updates have been released for Alpha 65 (title of this post amended!) and they are expected for A37, 57, 33 etc as well. We will add new cameras to this page rather than making new posts.

The firmware update omits the one function most demanded by movie makers – a fixed or user-set gain for the microphone, or for the mic socket. This exists on the Alpha 99. Having a permanent Auto Gain on the 7 models means they are unsuitable for most video work, where Nikon and Canon cameras have this vital simple control to prevent poor sound quality. The firmware was expected to add at least a fixed gain, possibly a simple hi/lo or three-step gain, ideally a multi-step adjustment. In the end, we get no change on this front, leaving Sony lagging behind with current models that are not functional for one of their principal functions.

The new firmware is Version 1.06 for Alpha 77 and 65 and version 1.01 for NEX-7.

Here are the links (from Sony UK, but usable on other regional models without damaging the localisation or settings):

Alpha 77 upgrade, Mac OSX

Alpha 77 upgrade, Windows

Alpha 65 upgrade, Mac OSX

Alpha 65 upgrade, Windows

NEX-7 upgrade, Mac OSX

NEX-7 upgrade, Windows

The Alpha 77 upgrade also adds in-camera lens correction support for the SAM 30mm f/2.8 Macro, SAL 50mm f/1.4 (and presumably for the Minolta/KM equivalent with the same lens identity), the SAL CZ 24-70mm f/2.8 SSM, SAM 28-75mm f/2.8, SAL 70-400mm f/4-5.6 G SSM, SAL 70-200mm f/2.8 G SSM, SAL CZ 16-35mm f/2.8 and SAL 35mm f/1.4 G (again, presumably also correcting the Minolta/KM lens with the same identity number).

There are initial reports of a faster response, and faster image review time, supported by other Sony sources (Sony UK does not list these). Changes like this are normally accompanied by minor improvements in image quality, as the firmware has to be addressed pretty deeply rather than just tweaking a few parameters. Nothing gets to work faster unless it’s re-coded and that is good news. This is a near 64-megabyte program download, and not all of that is used for the updater part of it which runs on your Windows or Mac machine (exact specs are given on the links, and 64-bit is not supported so you need an old laptop or something like that to do your updating, if you have current systems – we always keep an older machine around for exactly this reason).

Specific additional claims which have surfaced include faster start-up and/or shutdown, more responsive front and rear wheels (?), improved auto review response, better AF performance with the new 500mm G, and better AF with scenes including bright areas.

Much the same applies to the NEX-7 firmware update, to version 1.01, which gives exactly the same Movie button disable/enable menu item (and lack of audio control update) along with improved performance using wide-angle lenses (which must at present mean the 16mm f/2.8, and perhaps the 24mm f/1.8, as no other lenses exist which can be called wide-angle and also work with the NEX-7 – the 10-18mm new design isn’t yet compatible). Auto bracketing is extended to 1, 2 or 3EV plus/minus and auto review of the image taken is made more ‘responsive’. The behaviour of the moving Flexible Spot AF marker is improved (?).

Auto review is not a minor function on the NEX-7 as sequence shooting may be speeded up in the process, or viewing through the EVF when shooting in motor-drive mode made tolerable. Users will have to report back as to whether this is the case.

NEX PDAF lens compatibility updates

There are lens firmware updates for the NEX-5R and NEX-6 – these add the SEL 18-55mm, SEL 18-200mm, SEL 55-210mm, and SEL 24mm f/1.8 CZ to the PD-AF compatible choices:

NEX-5R lens compatibility upgrade .02, Mac

NEX-5R lens compatibility upgrade .02, Windows

NEX-6 lens compatibility upgrade .02, Mac

NEX-6 lens compatibility upgrade .02, Windows

Comments

Where we have put (?) that’s because the difference is not defined and we’ve never noticed any particular shortfall in performance, or heard any complaints about these aspects. Therefore we would assume this was ‘collateral benefit’ – an improvement which has come about through tweaking other functions. And it is reasonable to assume other collateral benefits may be present which Sony considers too slight to mention, or simply wishes not to refer to.

From past experience it is always worth doing these updates and there is no risk to your gear if you read and follow the instructions carefully.

——————————————————–

Added after upgrading our Alpha 77, making test shots before and after:

ISO 1600 noise/grain from firmware 1.05 – 100% clip sRGB, 1/13th at f/5.6 as metered

ISO 1600 noise/grain from firmware 1.06 – 100% clip sRGB, 1/15th at f/5.6 as metered, conditions identical, focal length 45mm not 40mm as first shot

Processing – ACR 7.1 with all NR and sharpening turned off, all parameters zero, linear, Adobe Standard profile etc.

Although there is no difference in the noise grain ‘size’ on examining a range of similar shots made from 1600 to 12800 ISO, the overall comparison favours the 1.06 update as having slightly less saturated colour noise and less tendency for blotchy green areas. With NR controls there is no great difference but 1.06 seems to be marginally improved.

1.06 changes the raw file data structure enough to yield a different metadata view. It adds a 350dpi resolution container, and fields to report GPS data in EXIF (whether or not GPS is active) which appeared for the image taken after the update, and do not appear in the shot taken beforehand, when checking metadata in Photoshop. There certainly is no great improvement but there are also more changes than Sony provide details for.

64-bit and 32-bit

On dPreview and other sites, some users state that the updater will work under 64-bit systems such as Mac OSX Lion and Mountain Lion. If it does, they are lucky and this is not a guaranteed fact. We tested the updater for Alpha 77 using several Mac systems and there is a significant difference in the time taken for the Mac to recognise the camera if a 64-bit system is used. In one case, a MacBook Pro would not communicate reliably with the camera regardless of the cable used and the state of reboot/clean environment. If the updater program does not immediately communicate with the camera and access the memory storage (red light flashing for several seconds), do not risk doing the update. The correct state of communication between host computer and camera is very fast indeed, moving between the steps of the update with no delay. Only the actual ‘run’ process takes a few minutes, during which time a progress bar will move steadily. If you have difficulty getting the updater to complete step one do not keep retrying on the same machine. Please note that for Mac users, there will be ‘device removed’ pop-ups appearing which are not mentioned in the instructions. These can be dismissed without any risk.

 

A divided path for Sony

Most Japanese camera companies have divisions, groups, and teams right down to the very last individual product. Even a single lens design may have its own small team, from R&D and design down to final assembly. What we are seeing happen in Sony right now is the result of complex competition and collaboration between several teams.

Take, for example, the new Sony 300mm f/2.8 G SSM II. You might assume this lens was mainly an Alpha division product from the former Minolta heritage, but in fact it’s been redesigned to work better with NEX and also with both consumer and professional HD video cameras from APS-C through Super-35 to full frame 35mm.

SLT/SLR system users gain with improvements like Nano AR coating (similar to new coatings introduced by Sigma, Nikon, Pentax and Canon), better MF control, and a better degree of weathersealing. It’s the complete update of the SSM motor (is it SSM II, or entire lens version II?) which provides compatibility with on-sensor PDAF and enhances CDAF, to offer the prospect of object-tracking AF during video. At £6,700 UK it needs to show major benefits to compete in the still field, but may have a market all to itself when fitted to the new NEX-VG900E full frame video camera.

It’s easy to think – ‘the first ever full frame video cam!’ but that is not the case. The Canon 5D MkII established the DSLR form as an acceptable professional video camera, and in the last three years a vast industry of shooting rigs, grips, follow focus devices, monitor screens and accessories has grown up all based on turning this video-unfriendly camera into something movie and TV crews are comfortable with.

Sony has implemented the sought-after 24 frames per second rate in all the new models just announced, not going for the European excuse of 25fps being close enough. This is to allow a so-called cinematic look, despite the fact that the movie industry has been trying to get away from 24fps just the same way as it threw off the shackles of 16 or 18fps many years before. Users want it, so they have at last provided it.

From the very start of reviewing HD capable cameras, we have emphasised the issues with audio – the *absolute* not optional need for audio fixed or adjustable manual gain control. I’ve done this for years in printed magazines. So has any other writer who ever had to use a camera with auto gain and nothing else. First Nikon (basic) then Canon (full control) and now Sony show they listened, if slowly and relunctantly, to something their own audio engineers would have told them was vital not a luxury.

End result – Sony enters the mainstream for HD video shooting with the Alpha and NEX systems.

The same technologies, in terms of sensor use and implementation of optical advances linked to Phase-Detection On Sensor (which I’ll call PDOS), now apply across the entire range of Sony digital imaging products from Handycam, through Cyber-Shot, through NEX, to Alpha. The Cyber-shot range is only missing an APS-C model.

What is particularly interesting is that this divided path is a parallel path now and not a divergent one. There’s no question of one straight and narrow path leading to heaven, one broad and easy road to hell, and winding ferny way to faery. Instead we get a four-lane highway joining Sony present to Sony future, with every option to change lane if you want to overtake.

Legacy and inheritance planning

Sony acquired a lot of old Minolta tech as a dowry in the 206 marriage to the Alpha system. Now having invested that legacy they have to make sure it still has value for future generations.

And example of what this really means can be found in the PDOS restrictions of the A99. The AF-D mode won’t work with some lenses, yet. For example – the 16mm f/2.8 fisheye, the 20mm f/2.8, the 16-35mm CZ f/2.8 zoom, any Konica Minolta zoom, any old Minolta AF system lens, the 35mm f/1.4, the 85mm f/1.4 CZ and G, the 135mm f/1.8 CZ and f/2.8 STF, the 200mm f/4 Apo G Macro, the 24-105mm D, any macro lens, the 400mm f/4.5, 600mm f/4, 200mm f/2.8 or the 300mm f/2.8 G SSM (pre-II). It is not even flagged as working with the 30mm f/2.8 SAM macro, 35mm f/1.8, 50mm f/1.8, 85mm f/1.8 or the 24mm f/2 Carl Zeiss SSM ZA. Or the 70-300mm G SSM, let alone the basic 75-300mm SAL.

It will only work with the 24-70mm f/2.8 CZ, the 28-75mm f/2.8 SAM, the 50mm f/1.4 current design, the 70-200mm f/2.8 SSM, the new 300mm f/2.8 G SSM II, 70-400mm f/4-5.6 G SSM and the new 500mm f/4 G SSM. Sony’s firmware requires that the user enter the focusing range involved. This is put forward as an advantage – making the system less likely to focus on a fence instead of the view through it – but in fact it’s an integral part of PDOS. Each of the 102 focus points spread across the sensor* is not a single pixel-pair, it’s a cluster of several pixel pairs tightly grouped. There may be the minimum of three differently pitched PDOS points per location, or perhaps more, to cope with the wide range of exit pupil conditions encountered when using Alpha-mount lenes.

For any one lens, the camera will need to know the broad focus range involved (hopefully the main PDAF array will normally provide this), the aperture at which focusing is taking place, and some further information about how the zoom or lens design influences the exit ray cone. From this, it will select the correct PDOS configuration and I think that for some lenses only a central zone will be active.

Sony states that firmware updates will add further lenses, but this technology only requires some relatively simple information based on the optical design. If they could have added more lenses from the start, they would have. Watch this space, because it may remain more of an empty space than you hope for.

* Sony imply that the PDOS area is large – actually it’s about 13mm square, within the APS-C zone, and does not extend towards the ends of the full frame much further than the cluster of regular PDAF points. These seem to be the same module as the A77, giving the A99 an AF ‘zone’ much smaller relative to its frame.

Zones and maps

The Alpha 99 also introduces something which almost has to happen if any of the above is going to work at all. Anti-aliasing filters do not have an even effect on sensors, especially full frame with wider angle lenses where the rear nodal point of the lens is relatively close. Geometry means that light passes through them at more of an angle towards the edges and corners, and there is therefore more distance between AA filter and sensor surface. With an AA filter having a single value diffraction-created diffusion of the image-forming light (aka blurring), the effect gets stronger as you move away from the centre (axis).

Since most lenses are also sharper in the centre and typical sensor microlenses are not ‘tuned’ from centre to edge, the overall result is to emphasise fall-off from centre to edge. Secondary results include a dramatic tendency for bright sources imaged in the extreme corners to have a strong, directional, surrounding glare. This is boosted by internal multiple reflection between the sensor surface and the inner face of the AA filter, especially if the incident rays are at 40° or less to the focal plane (where on-axis rays are described as being at 90°).

The best solution to this is the classic one – what Olympus called telecentric lens design, where you do your best to project the image on to the sensor from a relatively distant position keeping all rays, centre to edge, as close to 90° as possible. But that calls for new lens designs and also restricts the optical formulae, tending to produce much larger heavier lenses. It’s very practical on one-inch or smaller sensors, OK on MicroFourThirds, feasible for NEX but not much an option for a full-frame coverage.

So, Sony has introduced an AA filter which they describe as ‘multi-segment lo-pass’. It’s not one strength across the entire frame, but divided or graded to optimise performance towards the corners. At the same time, they have introduced a similar zoning to noise reduction, which we assume to mean the NR applies to the raw output before a raw file is saved. Combined with the usual sensor mapping, and lens profile based vignetting compensation, the overall effect of these refinements should be to:

  • Even out the apparent resolution and image acutance across the frame
  • Reduce the mapped peripheral gain effect, under which images appear to be noisier at the edges unless natural vignetting is allowed to be present
  • Remove artefacts such as corner streaking or softening, and fringes or flare from light sources towards the extremes

No doubt this is also combined with the detailed ‘repair’ function used to deal with PDOS. More on this later, as there’s an implication that the PDOS on the A99 is not the same as that on the NEX-5R or NEX-6, and may use a second layer of pixels leaving all 24.3 megapixels of the imaging layer untouched.

The area-specific NR is probably essential to achieve the high ISO range at 14-bit conversion, though it’s not unusual for cameras at this level which claim 14-bit conversion to have a variable true bit depth depending on ISO, image style and exposure conditions. We can assume that 14-bit will only be fully utilised under ideal conditions at ISO 100.

Exactly how Sony has managed to adjust AA values in ‘segments’ without visible transitions, we’ll have to find out. The same goes for NR.

The missing NEX-9

There is one camera absent from the September 12th launch – the 24 megapixel full frame NEX-9. The appearance of the HD video Handycam, NEX-VG900E, indicates that the model name for the full frame 24 megapixel NEX will be NEX-9. Images of the VG900 show it using an Alpha via the standard LA-EA2 adaptor, and we can be sure that this and not a special range of E-mount full frame lenses (almost pointless) will be how the NEX-9 takes A-mount glass.

In the meantime, the NEX-6 appears to be perfectly pitched in price, but see my comment below about GPS.

The missing GPS

While the A99 has GPS, we’re still left with no NEX model yet featuring GPS despite these being the ideal travel and walking companion. Nor is there a current SLT model with 16 megapixels and GPS, as the Alpha 55 replacement doesn’t have it and the ‘baby’ A77, the A65, is a 24 megapixel again. The Cyber-shot RX100 and RX1 models also don’t have GPS. Whether or not the new hot shoe will allow an add-on GPS remains to be seen.

The new 50mm f/1.4 SSM Carl Zeiss T* Planar

Whatever you think of Minolta glass, or new Sony glass, the Carl Zeiss name on a lens is a huge draw. Reactions to the otherwise rather pedestrian DSC-RX1 prove this. People will put up with being back in 1972 – the era of cameras like the Minolta Hi-Matics with fixed 40mm f/1.7 and similar Gauss design lenses of very high quality – if only it means getting rid of poor quality digital images. There was a time when you couldn’t sell a 50mm standard lens with a camera, and there was a time before that when every system was judged initially on the quality of its 50mm choices. We may be returning to that way of thinking.

Edit – at the 2006 launch of the Alpha 100, a 50mm f/1.4 CZ was briefly shown in Paul Genge’s presentation to UK/English language journalists. I did not report on this as none of the literature confirmed what we saw on the Powerpoint screen. I believe this lens has been planned for six years.

Flash

The new HVL-F60AM flash with rather weak video light and new hot shoe might seem an annoying departure, but remember, the A99 has no built-in flash and thus can not control wireless remotes without a commander. No HVL-F20AM style mini flash has been previewed, so the F60AM is the only commander. But your old flash will work fine off-camera controlled by your new one.

Parked on the hard shoulder

So, having looked at the four way road map for Sony, I must confess that I’m pulling into a rest area for a while. I did not sell my Alpha 900 or Alpha 77, and I’m glad I didn’t. Nor did I sell my 24mm f/2 even though it has been little used for a few months. It has been waiting for a 36 megapixel full-framer, which makes a 24mm a much better all-round lens because of the croppable image size.

I’m not one of those photographers obsessed by bokeh or the need to throw parts of my picture into extreme defocus. At 24 megapixels, APS-C is already seriously short of depth of field even at optimum apertures like f/9. I’m more likely to spend my money on a Samyang 24mm f/3.5 full frame tilt-shift lens to use with both the A900 and A77 than to invest in an A99. I have no use for a revised 300mm f/2.8, especially on full frame where it seems to me now to be a very conservative focal length, and though I’m sure a 50mm CZ will be wonderful I have no complaints about my Minolta-design Sony 50mm f/1.4. I do shoot video, but rarely in conditions which demand that I use full frame, and if Sony don’t put manual audio control into older models via a firmware fix, I’ll just buy a Canon 600D.

The price of the Alpha 99 is not as bad as people suggest, with UK stories launching it at £2082+VAT, or $3200. But I’ve got a very good quality pure still camera in the Alpha 900, with effectively noise-free imaging from ISO 100 to 320, excellent battery life and exactly the same maximum image size offered by the 99.

I think I’m in the market for the NEX-6 body but I do not care in the slightest about the WiFi aspect, or the downloadable apps. If the new remote control can actually trigger and end video shooting with the A77, NEX-5n (etc) I’ll definitely buy one. The RX1 is not for me either – had it been fitted with a 17mm, 20mm or even a conservative 24mm then it would have followed in the footsteps of the great wide-angle cameras I have worked with over the years from the Brooks Veriwide through the Plaubel 55W to Hasselblad SWC and Fujfilm G645SW. I would not even mind a separate optical finder for that, much; I was used to it!

Things we forget

The industry has put a huge effort into autofocus solutions ideal for interchangeable lenses and zooms, and apparently set aside the idea of external AF modules for good. With a fixed lens like the RX1, an AF module not working through the camera lens itself is a practical idea and could be far faster. We have also forgotten about those twin-lens compacts, with a switch to go from 35mm to 65mm (or whatever). Small sensor sizes, new lens design and ideas could make that concept work again.

The story of development for all types of camera is not over as there are old ideas to be revisited, and new ideas yet to come.

See B&H news on all the latest Sony stuff

– David Kilpatrick

1 2 3 4 22