Firmware updates for RX10, RX100mkIII

From Sonyalpharumours (with the links all very neatly arranged, probably from Sony’s own sources) details of firmware updates for the RX10 and the RX100 MkIII. Surprise at our end about the RX100 update, since the camera has only been on the market a short while, and the internal batteries used to maintain the date (etc) usually have a seven to ten year life!

So, how on earth did they discover that a ‘low remaining life’ of this battery could cause problems? Time travel? Ah, that’s the answer – someone will have accidentally set the date to 2021, making the camera think its internal battery needed replacing because Sony will have put into the system a lockout which occurs at the end of the expected life for this component.

All those of you with Epson professional printers over five years old, who have managed to download a service manual, will know how this works. The printer is programmed to commit suicide and tell you that a certain service component needs replacing; the engineer’s manual tells the engineer to inform the owner that the printer has reached the end of its useful life. Another printer sale!

RX10 firmware download at Sony US, Sony Germany, Sony UK, Sony France, Sony Italy, Sony Spain, Sony Holland, Sony Belgium, Sony Austria, Sony Switzerland, Sony Norway, Sony Sweden, Sony Portugal. It adds following improvement:

Enables shooting 60p/30p/24p/120p movies in the XAVC S format that supports high bit rates  (1920×1080) 50p/25,(1280×720) 100p, (1920×1080) 60p/30p/24p, (1280×720) 120p
Note: When shooting a movie in the XAVC S format, ensure that an SDXC card of Class 10 or faster is used.

If you don’t use Windows, most of these links do not work – Sony Australia has a Mac OSX link.

RX100m3 firmware download at Sony US, Sony Germany, Sony UK, Sony France, Sony Italy, Sony Spain, Sony Holland, Sony Belgium, Sony Austria, Sony Switzerland, Sony Norway, Sony Sweden, Sony Portugal. It adds following improvement:

This update improves stability in rare cases where the unit does not turn due to low remaining life of the internal back-up battery (used to maintain the date and time)

Sony updates RX1 and RX100, adds new flash

In a move which will not delight many owners of the 2012-released RX1 and RX100 cameras, Sony has chosen to update both of them in fairly subtle ways which improve performance without changing the basic lens specifications at the heart of each camera. The makeover to produce the RX100 II is more thorough, and includes a tilting rear screen, a new back-illuminated version of the 1.0 inch CMOS sensor, and a Multi Function Accessory Shoe which can power an electronic viewfinder or other accessories. It also features WiFi and Near Field Communication for transferring those tiny 20 megapixel files to your smartphone, perfect for direct upload to Facebook (just shoot Small JPEGs instead, keep the big raw files untransferred).

rx100-vII

You can view the European press release about the RX100 II here.

The RX1R is less thoroughly upgraded, as it’s basically an RX1 with the low-pass (AA) filter removed. Got to admit that we could have sworn Sony originally said, at photokina, the RX1 did not have an AA filter. Its performance seemed to back that up. Then, in the release version (which was very different from the September 2012 pre-production models, even in control details) this was moderated to say that there was a special low strength AA filter. Now, in the RX1R, the AA filter is definitely removed and some new processing added to combat the resulting increase in moiré and colour artefact production which always goes with the absence of the filter. Nothing else is changed; the two models are very similar to Nikon’s D800 and D800E, and like them will be available side by side. The RX1R does not replace the RX1. Whether owners of RX1 will see it quite that way, who knows?

At this level of camera, there will be plenty of buyers who want to have BOTH bodies. Just as, with the RX100, despite version II not having the imaginary extra lens range dreamed about by those who don’t realise what’s involved, there will be many buyers for the new model who will pass the original on to a family member or keep it as a spare.

See the press release about the RX1R here.

Finally, there is a new HVL-F43M flashgun with the now familiar rotating head design first seen on the HVL-F58AM. This slightly smaller but almost as powerful flash unit has the Multi Function Accessory Shoe (and can now therefore be used with both the above Cyber-Shots as well as NEX-6, A99, A58 and future SLT/NEX/Cyber-Shot models). It has an LED light for video, also useful for modelling when using flash off camera – but get our latest issue of Cameracraft, No 4, to read my detailed article on how the quality of LED light compares to other sources!

A question which remain unanswered is – when will Sony introduce the shoe fitting GPS module which is already provided for in the pinouts of the Multi Function Shoe, on the NEX-6, RX1, Alpha 58 etc? Having this on the market would certainly make the RX100 II even more of a must-have upgrade.

Be warned (perhaps by our review of the Alpha 58) that the promoted Tri-Luminos colour display compatibility – a change in the camera’s RGB sensor filters and processing – may not necessarily make for better colour with other devices, or for printing. It’s a good reason to buy a new Sony television but not an especially good reason to prefer the new models over the old non-Tri-Luminos type.

Finally, having removed the AA filter from the RX1 to create the RX1R, we must await the arrival (or non-arrival…) of the Sony Alpha 99R. That would be logical now that a refresh to new models seems to be called for after only 6 to 12 months on the market. Perhaps that is a bit cynical. What often happens in this industry is that a product will be revised when stocks of all the components for the original batches are used up, and not enough finished product is in the pipeline to satsify predicted demand.

The RX1 and the RX100 have both been runaway successes worldwide and it may be that new production was commissioned and presented a chance for hardware changes. Firmware updates for existing owners? A second priority, but don’t give up hope…

– David Kilpatrick

To discuss this on the Photoclubalpha Forum, go to (but remember it may take a day to be activated if newly registered):

http://www.photoclubalpha.com/forum/viewtopic.php?f=3&t=7770

Lensmate custom kit for RX100

Lensmate produce an ultra lightweight filter adapter for the Sony Cyber-shot RX100, as well as selling some related accessories. We ordered from them a filter adapter kit including the 49mm threaded filter ring ($32.95) and to this order added Richard Franiec’s beautiful CNC machined aluminium custom body grip ($34.95) and a JJC Polycarbonate screen protector ($5.95).

lensmateorder

The filter holder was the main purchase, but in the end least likely to be used – the grip, on the other hand (the right hand…) will be used for ever. Here’s the content of the filter package:

lensmatekitcontents

From the left: 49mm lens cap with retaining lanyard; white box for whole kit; thread for use if the adaptor needs to be removed, together with alcohol wipe for cleaning before fixing; the 49mm adaptor; the lens-mounted adaptor ring (with yellow tape); a circular template, used to position this perfectly. As an alternative or an extra, you can choose a 52mm filter ring.

lensmateattach

To do it perfectly the tape should actually be parallel to the camera body. It’s not that important but looks a little neater when fixed. The adhesive is uncovered on the back of the adaptor, it is placed in the centre of the positioning guide, and pressed home. To extend the lens and keep it firm, the camera is switched on, and the battery removed; this leaves the lens in this position. Only light pressure is needed. The yellow tape and the positioning ring are then removed.

lensmateattached

The marks visible on the lens were left by the alcohol wipe, and cleaned off afterwards with a lens cleaning wipe. In this shot, the 49mm filter ring is bayonet fitted into place (a little less than a half-turn). The fit is very positive and the action is light but firm. The whole item weighs such a small amount it adds no strain and can be left fitted permanently.

filters49mm

Here are two filters – a 49mm Minolta polariser and a 49mm No 1 Minolta close-up (not a 1 dioptre, but stronger, and a double element achromat with coating – one of the best close-up lenses you can still find around on the used market).

polfilterattached

The polariser is flared to allow wide-angle coverage. This makes it ideal for lenses like the NEX SEL 16mm f/2.8. But you can’t fit a lens cap of standard size (it widens out to accept a 57mm push-on, similar to a 55mm screw-in in size).

capstring

Lensmate provide a centre pinch fit lens cap with a retaining lanyard. It is not needed as the camera has its own lens cover shutter, but if you fit a filter, you may want to add the cap to protect the filter.

minhood

This is a Minolta lens hood for the old MC 45mm f/2 Rokkor. It’s very light and is ideal for the RX1 (we’ve sold a good few of these on eBay for exactly that purpose). There’s no great benefit on the RX100, as the lens flare this camera suffers from is rarely to do with stray light, nearly always with light sources within the frame.

The overall thickness of the adapter for filters is less than 3mm. It does not affect operation. Once fitted you forget it, and it becomes part of the camera, but it must also add some protection.

closeupno1min

Here is the closest at wide-angle using the Minolta CU lens.

closeuplongest

And this is at the longest focal length (where close focusing is most restricted with the RX100). More powerful close up lenses – this one is about 1.5 dioptre – will produce a more dramatic result.

In the photos above, you’ll see the body shape is rather enhanced. The workout to add this muscle is brief and easy.

plainrx100

Start with a cleaned RX100 body.

gripstick

Take the Franiec precision grip, and remove the two 3M permanent adhesive release papers.

grip1

Position on the camera and firmly press into place. It isn’t going to shift after you do this.

grip2

And that’s it. A great product, a perfect finish, and it really does make the RX100 much easier to hold securely. It also tends to position your thumb correctly on the back and your index finger over the shutter. It is perfectly designed and manufactured.

Finally, here is the JJC Polycarbonate (not Gorilla Glass) LCD screen protector.

jjcpolycarbonate

This is simple enough to fit and one fitted is invisible. The tab for the release paper didn’t work all that well and nor did the tab to remove the protective layer, but a bit of fingernail prising helped peel both off. The adhesive is only round the edge, and the protector can be removed easily.

The website for Lensmate products is: http://www.lensmateonline.com

ACR 7.2 and Lightroom 4.2 RC – RX100 compatible

The good news is that you can now download, free, the Release Candidate versions (expire October 31st) of Adobe’s Lightroom 4.2 and Camera Raw 7.2, as well as DNG Converter 7.2, which will give you raw conversions for the Sony Cyber-shot DSC RX-100.

The bad news is that no camera lens profile is included, and until someone creates one, the distortions and CA of the RX-100 lens are not corrected by these programs. Also, we can confirm that no further highlight recovery is possible, beyond that already enabled in Sony Image Data Converter. This has not always been the case with ACR/LR. They have often enabled clipped highlights to be recovered with useful detail from KM and Sony raw files. The RX-100 raw files are right on the edge of overexposure and you just can’t pull burned out highlights back in.

But against this, the high ISO performance of the RX-100 is superior to, for example, the NEX-5n. That’s surprising and worrying, as the 5n is better than the NEX-7. ISO 3200 images from the RX-100, processed through ACR 7.2RC, are about as good as any APS-C camera currently manages and not far off what can be expected from a full framer.

Shot at f/1.8 on the RX-100, 1/30th, ISO 3200 – about as dark as it gets for hand held shots.

100% ACR 7.2 clip with NO noise reduction at all and no sharpening

On the Canon 5D MkIII, 1/3oth at f/2.8 using the 40mm pancake lens – twice as much light as the pub scene above, gold Olympic letterbox in Edinburgh seen by night time street lighting

Sure, at 100% under the same process conditions it is better – but once you apply NR to the Sony image, the difference is levelled considerably. And this is the world’s best full framer for low light, right now, over 20 megapixels.

Here is your download link for Adobe Lightroom ACR 4.2 RC:

http://labs.adobe.com/downloads/lightroom4-2.html

And here is your link for ACR and DNG Converter:

http://labs.adobe.com/downloads/cameraraw7-2.html

The results at speeds from ISO 80 to 400 are a match for any DSLR, with the exception of the issue of dynamic range above highlight clipping. There is no significant margin for highlight recovery. This is a marked contrast to the early KM Sony sensor such as the 8 megapixel used in the Dimage A2, which had almost two stops of clipping-free highlight recovery using the metered exposure in high contrast situations.

– DK

 

Sony Cyber-shot DSC-RX100 review

The first thing that is likely to strike you about Sony’s one-inch sensor Cyber-shot DSC-RX100 is size. It’s tiny, slightly smaller in body than the Nikon 1 series interchangeable lens mirrorless cameras using an identical size 2.7X factor, one-inch or 13.2 x 8.8mm sensor.

This just a fraction over half the area of a standard APS-C sensor, and where Nikon has chosen to have 10 megapixels of active imaging plus others unused or devoted to phase-detect focus on the silicon, Sony has opted for 20 megapixels.

At first this seems excessive, until the performance of other new smaller sensor cameras is considered. The Fuji X-10, for example, has a 12 megapixel sensor measuring 8.8 x 6.6mm and achieves a respectable balance of sharpness and noise-levels. The RX100 has a slightly lower pixel density. Compared to the Canon G12 it’s four times the sensor size and twice the sensel size.

The 1.0 type sensor also gives just that little bit more creative control over depth of field. With the usual third to two-thirds inch standard sensors in pocketable compacts, the lens must be used wide open at any given focal length to provide a degree of differential focus. To avoid sharpness loss, most such cameras can not be stopped down to settings like f/11 and sometimes have a choice between two apertures only, wide open and something moderate like f/8.

The Fuji X10 zoom only stops down to f/11 but offers a full continuous range of settings. So does the RX100, its 10.4-37.1mm lens ranging from f/1.8 to f/4.9 wide open but limited to f/11 minimum regardless of zoom setting. Since even f/11 can produce some diffraction-limit related softening, its performance around f/5.6 is critical. This would be the setting I would choose for routine Aperture-priority shooting.

At such a setting, the low ISO quality of the RX100 can be exploited. Unlike any of the Sony NEX models, the little RX100 has been given user control of maximum and minimum Auto ISO limits. The full auto range is from 125 to 6400. Manually set ISO can be extended downwards to either 80 or 100 (but these settings just overexpose the image and compensate in conversion). The camera seems to have been developed as well as manufactured in Japan, and the firmware and menu system resembles the mainstream Alpha DSLR/SLT camera line rather than the mirrorless NEX. Editor’s note: having sold my original RX100 I bought another, the second although made at the same date, is made in China. It seems either better or no worse.

The shutter is speeded to 1/2000th which is not a very fast high speed for a camera capable of 10 frames a second action bursts (or 2.5fps normal continuous shooting). The longest exposure possible is 30 seconds. By whatever means, aperture or shutter, Sony allow control to within 1/3rd EV step and compensation to ±3EV, but AE Bracketing is limited to three frames at either ±0.3 or ±0.6EV.

Control over settings is handled by a single top mode dial, a shutter release with power zoom lever to the front, a rear Control Wheel with four cardinal point click functions, four further surrounding buttons, and a Control Ring set round the lens bezel. This can be silent or make click sounds to mark setting changes but lacks physical resistance or detents. It doubles as a fine focus ring when the camera is set to manual focus, aided by focus peaking and on-screen magnification. Its action is very smooth indeed, and it can be operated easily by a single finger from either hand.

Real photo – the film and lens are entirely hidden behind the RX100 but imaged by its close focus ability at 10.4mm

Considering the 101 x 58mm footprint of the body, everything is designed efficiently to allow a 3 inch rear screen using 1.2k dots and an additional white-light augmenting RGB to improve sunny day use. It’s not a touch screen, nor is it articulated or hinged. But you will touch it, for sure… a cloth to wipe off your thumbprints is an essential accessory. It appears to be glass, but may just be a hard coated plastic layer, something with which Sony has a bad history.

Actual size next to a CF card, which this camera of course does not use – it takes SD or Memory Stick Pro Duo.

The new small battery type NP-BX1 allows 330 shots – better than many high pixel count consumer DSLRs and mirrorless models now – and can only be charged in the camera itself, via any USB 5v source and the supplied Micro USB connector cable. This is not a standard Mini USB, just as the Micro HDMI (cable not supplied) is not a commonly found fitting.

Against the disadvantage of in-camera charging you can set in-car charging, laptop or phone supply charging, and the camera’s ability to run without a battery installed when connected to its supplied AC charger. Both third party lith-ion cells and third party external chargers can be found on eBay. Anything which offers a standard, powered USB connection can charge the RX100.

The British charger is an old warhorse. The US charger is a neat monobloc transformer half this size with folding AC mains pins. This kludge is bigger and heavier than the camera…

A full charge takes 155 minutes using the charger with its high level USB-power output, but may take longer through a PC USB port or devices providing minimal USB power. You can leave it plugged in to USB all the time as the charge cycle is cut off when an orange charging light in the on/off switch extinguishes. When the camera is switched on to connect to the computer as Mass Storage (etc), this light turns green. It is possible to use the RX100 without the battery installed, connected to the charger.

In the box, you get no software, only an instruction manual which covers the bare bones. It seems to be assumed that what Sony call the best ‘professional’s compact’ ever will be bought by experienced digital camera users. Nearly all the functions on the RX100 from sweep panorama to HDR and noise reducing multishot modes are found on other cameras, and the location and nomenclature of all functions is at least familiar. Download links are given for a PDF identical to the bare manual, or a web-page based version with colour illustrations which is far better but can’t be downloaded.

Here is the link for the full colour, more detailed user manual: http://pdf.crse.com/manuals/4432943111/EN/index.html

A wrist strap is supplied, along with two neat cord and leatherette toggles to attach a regular camera neckstrap, as the body has two almost microscopic strap lugs. Nothing other than the very fine cords of Sony’s strap or strapholders would be likely to fit.

The body is solidly made and all access doors seal well, but it’s not resistant to anything wet, dusty or involving hard surfaces and heights. The lens’s rear glass is located very close to the sensor, and zooming appears to move only the middle and front groups. This should make it dust-free for life. Time will tell, and if any dust ever does get on the sensor, it will need a factory repair. But it looks to be designed so that will never happen.

For the professional user, the big appeal of this camera is its invisibility. Only 36mm thick with the lens collapsed, it’s just a fraction fatter and smaller than an iPhone, and with focusing down to under two inches there’s hardly anything it can’t capture. Users may criticise the 28-100mm equivalent focal length range, preferring 24mm if possible, but the focal length of the zoom is stated after allowing for some strong in-camera distortion corrections at the wide end.

To achieve a 28mm field of view (73°) for an in-camera JPEG, the corrections must deal with a very high level of barrel distortion. The raw file is uncorrected, and shows a diagonal field of view closer to that of a 24mm (85°). This may explain why Sony’s own information has claimed both 24mm and 28mm as the widest angle, when the stated focal length and sensor size clearly equate to 28mm. My measurements from the two image versions below indicate that if the correct equivalent is 28mm, the uncorrected diagonal angle is equivalent to a 24.8mm. Either way the RX100 should not be criticised if you could be happy with a new Canon EOS M – 1.6X sensor, 18-55mm lens, that’s a 28.8mm widest limit before applying Adobe Lens Profile corrections which will probably reduce the true angle to a 31mm.

And that of course applies to almost all wide angle lenses except the Sony NEX E 16mm f/2.8, which has pincushion not barrel distortion and therefore does not lose any of its diagonal angle (for that is how lens angles are measured) when corrected. There is an inbuilt profile for the latest ACR and Lightroom, but unlike other Adobe Lens Profiles, you can not adjust or turn off the disortion control. Apply the profile does not move any pixels, it simply corrects vignetting and CA. These programs are reading metadata in the raw file to apply the geometric correction automatically and you can’t disable it. To see the full field of view of the lens at its 10.4mm focal length, you must use a processor like Iridient Raw Developer (Mac only) which ignores the instructions.

Above: in-camera fully corrected JPEG at 10.4mm, and uncorrected raw conversion (by Iridient Raw Developer) showing full view angle of the lens before removing the high level of barrel distortion. Just move your cursor over the image to see the change. Adobe programs prevent the removal of the camera’s automatic correction – you can’t get to the ‘wide’ version.

When shooting video in 16:9 format with stabilisation set to Standard (optical) or Off, the lens range is trimmed to 29-105mm equivalent, and the image is cropped only slightly on pressing the Movie button. If you set Active stabilisation for video, optical stabilisation is replaced by pixel shift electronic stabilisation on the sensor. The crop is to 0.87X of the normal video field (measured here), meaning that the effective focal length range for Active video is 33-120mm. This 0.87X factor is exactly the same as the NEX-7 video crop factor.

The RX100 can be concealed in your hand and when used, with no eye-level viewfinder and composition on the rear screen instead, you look like any cameraphone user or tourist. In fact you are capturing what could be a highly detailed 20 megapixel image suitable for double page magazine or newspaper repro.

This is, of course, also a camera which won’t get you thrown out of sports stadiums or concert venues despite its ability to capture 50/60p HD1080 video with good quality stereo sound, and to capture full resolution JPEG still frames during video (17 or 24Mbps, not 28Mbps) without interruption. Writing the JPEG takes some time, parallel to video writing, and a faster SDHC or MS Pro Duo card is recommended. It can record AVCHD-2 format movies at up to 28 megabits per second, with AF during video and a good degree of setting control including manual exposure. It can not capture raw still files during filming. There is a faint click sound only during the video.

 Output

As for the quality of results, the lens may be letting the sensor down slightly; although very high in resolution even wide open, corners can lose detail because the focus plane is far from flat. Bright lights or overexposed details can produce a visible flare or glow, it’s possible to get purple fringes. Against this you must set pixel-crisp sharpness wide open, at any focal length, in many shots.

The exposure over-ride is excellent, and the screen really gives an exact view of what you are doing. Here, minus 2 stops was needed. This is at ISO 125, 1/25th at f/5.0 at 17mm (45mm equivalent) focal length. The original file has perfect detail corner to corner – every leaf sharp.

At the best – ISO 80 to 125, stopped down just one full step from full aperture – the RX100 can match or better the typical output of a 21 megapixel full frame DSLR with 24-105mm lens. At the worst it’s better than any smaller sensor compact, especially if the 10 megapixel JPEG shooting option is chosen or the file size is reduced to match a typical 12-16 megapixel 2/3rds inch sensor image.

One of my first tests, wide open at f/4.9 at 37.1mm and auto set to ISO 500, in camera JPEG. Just lovely colour and tone, perfect WB, perfect auto exposure. An early fallen leaf.

High ISO results are encouraging – using ISO 800 or 1600 should be no barrier to large clean reproductions, 3200 and 6400 remain clean in good light with detailed subjects but show coarse mottled grain in defocused areas with low light. Multishot modes are similar to NEX and can greatly improve results, but for my tests I stuck to raw files (though all the examples shown here are from in-camera JPEG) and single shot modes. Also, with f/1.8 apparently as sharp as most lenses well stopped down and having plenty of depth of field, I have tended to use low ISO settings in conditions where I’d set my Alpha 77 to ISO 800.

This shot was taken at 1/100th at f/1.8 at ISO 125, just because with this camera you CAN – no need for high ISO when you have f/1.8 at 10.4mm. But how about lens quality, how about depth of field? Take a look – all clips from the in-camera JPEG:

You can see the tendency to flare around light sources, and remember – this is an optically corrected image. Look at this in raw, and the purple fringes on those lights are the most colourful thing in the shot. This is from the middle of the frame.

Here’s the extreme right hand up to the very edge. Remember, it’s a 28mm f/1.8 equivalent.

Here’s the left hand, further away, a little bit in from the edge to catch the best detailed target.

And here is the bit you expect to be awful, more distant trees against the sky. Not bad for f/1.8?

Active video stabilisation is pixel-shift electronic, still stabilisation and standard video are in-lens optical. Both work well and the electronic variety is particularly good at dealing with small movements of your hand when holding such a small device for filming. Video quality is a match for any HD1080 DSLR, with a true 50p or 60p (USA) frame rate. The RX100 also has full user control over ISO, shutter speed, aperture and manual focus during video; the shutter-release zoom lever provides a smooth slow fixed speed zoom during filming. Beyond the 3.6X optical range, further digital zooming drops sharpness and can not be recommended. The point where digital takes over is well defined by a pause in zoom travel but you can not disable digital zoom to 14X maximum.

ISO 3200, 1/30th at f/1.8, 10.4mm, very low yellow pub light.

100% clip of in-camera 3200 JPEG – maybe a bit rough, but not bad at all…

White balance is generally well optimised, exposure is less predictable in difficult conditions. The multi-zone metering and focusing settings can produce unexpected results, spot and single point choices may not do any better as they will favour just the targeted tone. Access to +/- compensation is rapid. It can be assigned to the ring round the lens. This control ring is smooth in action and works well for adjusting exposure while viewing the rear screen.


Faults or flaws

The uncorrected image has fairly strong CA, which in defocused zones (especially that critical phase between sharp and truly out of focus) can create purple fringes on a large scale. The camera software turns these into white glow. Slightly defocused detail, especially if brightly lit beyond the clipping range of the sensor, can produce unpleasant bright fringes which are impossible to remove. Very bright areas even when well focused tend to flare into their surroundings.

I don’t really want to show what the fully lit bits of lichen at minimum focus look like – the highlights flare a fair amount.

Dynamic range is good, but not exceptional. Highlights clip readily, and recovery in either Raw Developer or IDC v4 did not pull in missing detail, it just darkened the value of a sharply clipped high bit. Though ISO 80 and 100 provide finer grain, they are less use than ISO 125 or 200 in contrasty light or with flash, as they clip more. Highlight colour recovery and use of DRO can produce some very odd effects. Editor’s note: since this original review, ACR/LR has been updated to process the raw files, and this is one reason I’ve bought an RX100 for the second time. I can now tames some of the lens and dynamic range issues very effectively.

At minimum focus, the aberrations get worse and overall sharpness is reduced, especially around the wide angle and two or three inches working distance with the lens wide open. It is easy enough to get know the lens, and its substantial sweet spot (almost anything not close-up, not contrasty or with patches of extreme overexposure). Having said that, you can also obtain stunning close ups at 10.4mm:

rx100f11maxclosewideACR

Click on this, and you can download the full size (probably crunched a bit from Level 10 JPEG by WordPress) image file. You will see a world of detail to amaze you and some fascinating aberrations and artefacts as well – perfect in a way, imperfect no doubt, but a wonderful thing to be able to do with a camera so small you can get it down into the a subject like grass. f/11, 10.4mm, hand-held, 1/40th at ISO 125, ACR processing.

High ISO JPEGs look clean in good light with hard detail. They look very mottled and mushy in darker softly focus areas of smooth tone. You may want to avoid using 3200 or 6400, but remember – the lens is f/1.8 to f/4.9, covering a range which is typically represented by an f/3.5 to f/5.6. At the wider to middle end, there is a two-stop advantage fading to a third-stop at the tele setting. If you stick to the wide angle end, you can use ISO 800 with as much success as 3200 would achieve in a DSLR, and pretty well the same depth of field too.

Design – the most annoying single thing is the pop-up flash which sits exactly where you are likely to hold the camera body at the left hand end. You will just have to learn not to hold it that way! That’s a penalty paid for such a small body. The tripod bush is also off centre to the lens. This only matters for specialised multi shot assembly or macro stepping.

Does it work?

Yes! The RX100 is actually a great little companion camera, and after getting it, I stopped using my NEX-5n kit for casual everyday snaps. The RX100 lives in my wallet beltpack or a carefully emptied and cleaned-out pocket, wrapped in a microfibre cloth. I may shoot a few pix or a video clip, and every day, I just connect the camera to my iMac and use iMovie to Archive the entire media contents. This copies all movies and also all stills. I then format the card before the next use, and the camera is always fully charged when I pick it up off the desk.

My best pictures are every bit as a good as a typical NEX-5n with 18-55mm shot, my worst results are better than most consumer pocket cameras and no worse than the worst NEX shots. You can take bad pictures with any camera! My videos are as good as any of the NEX or Alpha models so far, and streets ahead of Canon, even including Canon DSLRs used by professionals. I would give the Nikon D800 videos the edge over RX100, and NEX-7 or Alpha 77 videos equal status. All are far more detailed and crisp than Canon’s HD1080, yet that is now a bit of an industry standard. I predict that the RX100 will gain a bit of a cult following for video making. Its movie setting on the mode dial allows user-set aperture and shutter speed, full control once you add manual focus.

Suggestions that it may supplant NEX are groundless. You can fit wonderful glass on NEX, and get 24 megapixels to the highest standard. You can’t fit wonderful glass on the RX100 and the zoom it comes with, Carl Zeiss or not, has clearly visible distortion and aberration issues that depend on firmware or software for correction.

Is it worth the money?

Maybe. I think the RX100 has been overpriced by around £100 in the UK but I see that many retailers are already dropping the price by that amount. Around £400-450 seems a fair price, the official £550-580 is high. Update: we sold our (Japan, June 2012) RX100 for £400 in August 2012. A replacement (China, July 2012) was found as new for £385, eBay used, in February 2013. New prices are now more of less where we suggested they should be, mid £400s UK, cheaper USA.

– David Kilpatrick

Check out the price of the RX100 from B&H

 

Mixed up market – specced up compacts, dumbed down DSLRs

Canon has pulled off another change in the direction of DSLR development with the EOS 650D, but in the process seem to have accepted a blurring of the boundaries between consumer cameras and enthusiast gear. Sony has finally bowed to pressure and put raw image processing back into a compact, using a larger than normal sensor, doing the same in reverse.

To explain, neither of these cameras belong within Photoclubalpha – we don’t usually report on Sony Cyber-shot compacts, equally rarely on Canon’s latest competitor to the A57. But these two cameras are waymarkers. They show us where two strands of development are heading, and how they are converging.

Canon EOS 650D

650D with new 18-135mm STM lens, required stepper-motor technology for off-sensor video auto focus

The new points about the 650D (also known as the EOS Rebel T4i for that least rebellious of areas, the USA) are simple enough. It’s yet another 18 megapixel APS-C model in the series 500/550/600 rather than the more professional 50/60/7 body form. Maximum frame rate is 5fps. It has full 1080p HD, but only at 30fps maximum (720/60p) with a 5.5MB/sec data rate. Unlike previous models, this one can focus during video shooting, and may well do it better than a NEX.

It has a conventional 9-cross point phase detect AF module much improved over earlier versions, included a central double-cross f/2.8 sensitive point. When shooting video, hybrid AF combines normal wide area contrast-detection with a similar centrally located phase-detect pixel arrangement that offers much faster locking on before the CD takes over to fine tune and track moving subjects or faces.

No visible signs on the CMOS – but that sensor had a phase-detect central zone

So there are two AF systems, one of which remains live for video. To work properly it needs a new type of lens motor, called STM. This stepping motor appears to be not unlike the NEX system lenses, offering the necessary control for AF during video with silent action. Just two lenses initially have it, a pancake EF 40mm f/2.8 STM and a general purpose stabilised EF-S 18-135mm f/3.5-5.6 IS STM. If you know your Canon system terminology, you’ll spot that the 40mm is compatible with full frame DSLRs it’s not just an odd 64mm equivalent for the APS-C models.

With other lenses, the implication from Canon is that AF during movie shooting will not work. That includes the cheapest kit option, the 18-55mm. No matter what type of USM or micromotor AF drive. If you want video with AF, you need the new STM lenses.

The Canon phase-detect on sensor is purely a central patch, not an overall function like Nikon’s 1 system 71-point PD. But, like consumer cameras, Canon adds touch screen functions to the 650D. This is a response to consumer demand. You can still operate the camera with the rear screen completely reversed. I have to admit that the first thing I did with the NEX-5n was to disable the touch screen function, and never use it.

For a Canon, the 650D has a surprisingly limited battery range, as low as 180 shots per charge if live view, flash and image review functions are used in their worst-case scenario.

The Sony Cyber-shot RX100

A neat metal bodied almost Samsung-like compact, the RX100 has an 8.8 x 13.2mm sensor, the 1/1 or one-inch ‘1’ format already used by Nikon. It offers a stabilised Carl Zeiss 28-100mm equivalent lens which is very fast (f/1.8 at the wide end, f/4.9 tele) and may be of enthusiast-pro quality, and a 3″ rear screen where daylight viewing brightness is enhanced using white pixels as well as RGB.

The RX100 offers full HD movies at 28M bitrate – 1080/60p equal to NEX and Alpha. It also seems to get reasonable life from a small battery, 330 shots or 165 minutes of movie, and to have a decent 2.5fps conventional fps plus the popular Sony 10fps speed piority mode.

For most of us, the really big news is that for the first time since classic bridge camera models like the F-828 Sony has decided to provide raw image capture in a pocketable compact. No doubt the success of the Fuji X10, Canon G1X and others has been observed. It is fair to say that Sony could have put raw capture into far more compacts – they all have it hidden away away, an ability carefully locked out by firmware.

To date, we have felt that Sony wanted to protect the NEX and Alpha markets at any cost by omitting raw even from the best Cyber-shot models. The RX100 changes this perception. It leaves the expensive semi-pro hybrid video and still camera, the NEX VG-10, looking a bit sad with its JPEG-only still capture. After all, if compact owners do indeed want raw, surely VG-10 owners would be expected to want no less?

And that sensor is 20 megapixels. It’s twice the pixel count of the Nikon 1. There was a time something like happened in the past. Nikon made a camera called the D1 (then D1X) which had a 5-megapixel sensor, and then a sort of firmware and processing fix to make it halfway like a 10 megapixel sensor. It was revealed that the ‘rectangular pixels’ of the D1 were actually two pixels in a strip. When a different RGB topping and readout was applied to the same exact silicon, it became the Sony 10 megapixel sensor we saw in the Alpha 100 (and the Nikon D200). Nothing like that could possibly have happened with a Sony 20 megapixel sensor to make a Nikon 10 megapixel sensor, even though they both share the same unusual 8.8 x 13.2mm size.

And even though Nikon uses a whole stack of pixels on that sensor to perform phase-detection AF without any apparent loss of those pixels to the image – spread out over 71 points across the entire frame too. There’s no way, is there, they could ever have based that 10 megapixel PD-AF capable sensor on a Sony 20 megapixel original.

– David Kilpatrick